Version Control with Subversion
Draft Revision 9189

Ben Collins-Sussman
Brian W. Fitzpatrick
C. Michael Pilato

Version Control with Subversion: Draft Revision 9189
by Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato

Published (TBA)
Copyright © 2000, 2001, 2002, 2003, 2004 CollabNet, Inc.

Table of Contents

0= Y0 (o 11
= = o P 13
AUAIBNCE .. e et et e e e e ea s 13
HOWtOREAANISBOOKceiiiitiiii et 13
ConventionSUSEAIN ThISBOOKuiiiiiiiiiieiii ettt eenes 14
TypographiCCONVENLIONS ... e e e e e e e e e eees 14
oo PP 14
Organization Of TRISBOOKc..uuiiiiiiiieiiii e 15
TRISBOOKISFIER ... e e 16
ACKNOWIEOGMENTS e e e e e e e e e e e eans 16
FromBen ColliNS-SUSSMENccvuiiiiiiiie it e e 17
FromBrianW. FItZPatriCKoiveeieiiices e e e 17
FromC. Michael Pilatoccouniiiiiei e e 17
O 1 1o o [FTox 1 o o I PR 1
WHhaL ISSUDVEISION? ...ttt e et e e e e e e et eean e eees 1
ST 0)Y7= £ Lo 0] o T (] Y PP 1
SUDVEISION'SFEALUMNES ...ttt ettt e et e e et e e et e e eaenns 2
SUBVErSION'SATCHITECIUNEeuuieeii e e e 3
INSEAHTING SUDVEISION ...ttt e be s 4
SUDVErSION'SCOMPONENTS ...ttt ettt ettt ettt ettt e e et e e e e e e ena e e eenens 5
A o s ol Oe] g o= o (= TP 6
LTS o0 1= o] Y/ 6
VA= £ T8 T 1o 11, T [=: 6
TheProblem of File-Sharingcouoiiiiiii e 6
TheLock-Modify-Unlock SOIULIONcouuiiiiiiiiieiiii e 7
The Copy-Modify-MergeSOolULiONcc.uuiiiiiiiiieiii e 9
SUDVEISIONTNACHION ...ttt e e e e et e et e e e e e eaeeean e 11
WOTKING COPIES ...ttt et ettt e e e e e e e e et e e e e e e e aeees 11
REVISIONS. ..t 14
How Working Copies Track the REPOSItOrYcocvvveeiiiiiiiiiiierin e 16
TheLimitationsof MiXed REVISIONSovvueiiiiiiieiie e 16
SUMIMIBIY .ottt ettt e e et e e et e e e e e n et e e e e eenas 17
G €10 1T o I o | 18
=T oL P 18
1016 5 P PP 18
Revisions: Numbers, Keywords, and Dates, ONMY!cooiiiiiiiiiiiin e 18
REVISIONNUMDENS ...t e e e e e e e e anas 18
REVISIONKEYWOITScoeviiiieiii et 19
REVISIONDE@LES ... ettt e s 20
INItTAl CRECKOULeeiiee e ettt e e e e e 21
BaSICWOIK CYCIE ...t e e e e e e e 22
Update Y our WOorking COpY «....uveuneeiieeiee e et e e e e e e e e e e st e e e enan s 23
Make Changesto Y our WOrKing COPYcccuvuneiiiiaeeiiiee et 24
EXamiNeY oUr CRanQESoiieiiieeeei ettt et 25
Resolve Conflicts (Merging Others Changes)c..vvevuieiiiieiieiiieeei e 30
COMMILY QUM ChaNQES .. .eve v e e e e ees 33
s 1T T e T (R 34
£SY 1 o 35
LS o 1 36
S Lo | PP TPPRP 37
LSy 01 T PP 38
A FINa WOrd ONHISIONYveeiiiii e e e eae e 38
Other USeful COMMENGSceiiiiieiiii et e e e e 39

Version Control with Subversion

LYo = o 39
LS Y111 oo 1 39
SUMIMIBIY .ottt et ettt e e et et e et e e e n e e e e e e e e anas 40
4. BranchingandMErQiNgccuuuiieiiieiiii e et 41
What'SaBranCh? ... e 41
USINGBIaNCNESceeiiii e e e e e e e e e e anas 41
CreatingaBranchooooiiiii 43
WorkingWithYour Branchooveiiiiiic e 45
TheMoral Of tNESIONYcove e 47
Copying ChangesBetween BranChesccuuuiiiiiiiiiiii e 47
Copying SPeCIfICCRENGEScouuiiii e 47
Best PractiCesSTOor Mergingovueieiei e e e 50
CommOonNUse-CaseSTOr MENGINGcouviiii e e e e e e e e e e e e eanas 51
MergingaWhole Branchto ANOtherooovviiiii i 51
UNAOING CRANGES ...ttt ettt e et e eeeabe e eeees 53
Resurrecting DEleted IteMSuiiiii e 54
SWiItChiNg AWOIKING COPY .. evnetieeit et e ettt e e et e e et e e et e e e e e e eeanns 55
=0 PP 56
Creating aSiMPlETag .. cvve e e 57
Creating @aCOMPIEX TAY «.vvueveeneeeeeeei e e e e e e e e e e e e e e et e e ean e eeenaeees 57
BranChMaiNteNanCecveueiie et e e e e e e e e e e eees 58
REPOSITONY LAYOULceeetie ettt e e e e ean e eees 58
(D e I = (] 001 PP 59
RS 0011 0= Y 59
5. REPOSItOry AAMINISIIatiONvvi i e e e e e e e e e e 61
REPOSIIONY BASICS. ... ieiieeieeei et e et e e e e e e e e e e e e e e e e 61
Understanding Transactionsand REVISIONS............oiiiiiiiieiiiiiecci e 61
UNVErSIONEAPIOPEITIES ... eeeiiie ettt ettt ettt e et e e e e eeees 61
BEKEIEY DB ... 62
Repository Creation and Configurationcceuiieuieeie e 63
L [070] S] o] = 64
Berkeley DB ConfiguIationveeunieiii i e e e e e e e e e e e e aaeees 66
REPOSITONY MBINTENANCEceeete ettt e e e et e e e eeaa e eees 66
ANAdMINISrator'STOOIKIT ... it 66
REPOSITONY ClEANUDcve ettt e e e ean s 75
ManNagiNg DiSK SPACEc.uuieiieii ettt e 77
REPOSITONY RECOVENY ..ovviiiii it e e e e e e e e e e eanas 78
Migrating aREPOSITONYuuiiiiieei e e e e e e e e e e e e 79
REPOSITONY BACKUD ... 82
AAINGPIOJECES ...ttt e e 84
ChooSiNg aREPOSITONY LAYOULcccuniiiiieiiiee e 84
Creating the Layout, and Importing Initial Datacoeeviiiiiiiiiiiniiieceeeeeee, 85
ST 0] 7= Y 86
LSS = V= @ 1T 1= 4 o] o 87
L@ a1 87
NEWOrKIMOOEL ... e e e et e e e eees 88
ReqUEStSANA RESPONSESeetiiiiiee et e e e ea e 88
Client Credentid SCaChiNgc.viuiiie e e 88
SVNSEIVE, ACUSIOM SEIVEL ...ttt ettt et ettt e et et et e e et et et et et en e e eneeenn e 90
INVOKINGTNE SEIVED .. ove i e e e e e e 90
Built-inauthenticationand authorizationcoovvi i, 91
SSH authentication and authoriZationcoeuiiiiiiiiii e 93
httpd, the APEChEHT TP SEIVEN ... e e 95
PrEr@OUISITES ...eeeiiei ettt e e e e e e e e aans 95
BasiCAPache ConfiguIationccuuuieiii e e e e 96
AUthenticatioN OPLIONSuuiiiiieee e e e eaes 97
AULhOMZAHTONOPLIONS ... 101
(= Lo o o [= 105

Version Control with Subversion

Supporting Multiple Repository AcCeSSMELhOAScevvnviiiiiiiiii e 106
820 7 o0 o I o 1o 109
RUNtiME CONfIQUIAtiON ATEAvuiiieiii et e 109
ConfiguratioN AFEALAYOULuiiiiiiieeiii et 109
Configuration and the WindowWS REGISIIYccuuiiiiiiiiei e 110
ConfigUIratioN OPLIONS.........ieie e e e e e e 111
0] 0= 1= 115
RV LY Y (0] == 72 115
ManiPUIELINGPIrOPEITIESceeetiieeiii e e e 116
SPECIA PrOPEITIES ...ttt et 119
EXternal SDEfINITIONScceeiii e 125
VeNdorBranCheS ... et 126
General Vendor Branch Management Procedurecc.ovvveiiiiiiiieiiieecie e, 127

LS YT e =o [o (1 £ o) 128

8. DEVE OPEN INFOIMELION ... eeeeet ettt et e et eenaa s 131
Layered Library DESION ...cc.uueeeiii ettt 131
REPOSITONY LAYEN ..o et e aaas 132
REPOSITONY ACCESSLAYENieiiiiii ettt et e e e 136

L0t 1= o1 I = P 138
USINGTNEAPIS L. 139
The Apache Portable Runtime Librarycoooeeeuiiiiiiiiiii e 140

URL and Path REQUITEIMENEScooutiieiiiiiie ettt sttt e e e eeees 140
Using Languages Other than C and CH+oouuiiiiiiiiiiciee e 140
Insidethe Working Copy AdminiStration ATEa.........c.uveuniiiiiieeiiei e 142
THEENIHESFIIE ..ot e 143
Pristine Copiesand Property FIIESvvvuniiiii e 144
WEDD A .o e 144
Programming With Memory POOISc.uuiiiiiiiie e 145
ContributiNgto SUDVEISIONc.uiiiiiiiiii ettt e e e e e ea e 147
JOINthECOMIMUNITY ...eeieii e e e e e e 147
GELTNE SOUICECOUE ittt e e e e e aaan s 148
Become Familiar with Community POlICIEScceviiiiiiieii e 148
Makeand TeSt Y OUr ChanQESccouuuniiiiiiie et 148
DONAEY OUr CRANGESeeeiieeeeei ettt et e e e e e e ne s 149

9. Subversion Complete REFEIENCEoouiieiiii e 150
The Subversion Command Line Client: SUNcoouuiiiiiiii e 150
SVNSWITCRES ..o e 150

SVN SUDCOMIMENTSttt ettt et e ettt e e et e e e eban s 153
LY=o |0 T 211
SVNBAMINSWITCNES ...t e e e et ee e eees 211
SVNadMIiN SUDCOMMEBINGSeuuiiee et e e e e e et eea e eees 212
SVNTOOK .. et aaas 224
SVNIOOK SWITCNES ... et e s 224

LSV 1 PP 225

A, SUDVErSIONFOr CV SUSEIS ..ottt e e e e et e e e e e et e e e eanns 241
Revision Numbers Are DIfferent NOWooouniiiiiii e 241
DITECLONY VEISIONS ...t ettt ettt et e et e e e e e et e e et e eeanaaeees 241
MoreDisScoNNECtEd OPEIaLIONSc..uierieieieeii ettt e e e e e e e e eeanas 242
Distinction Between Statusand UpPdatecc.uvviiiiiiiiiiiicciie e eee e e 242
[Tz 10 1S a0 N 1= o 243
MEtAOEEAPIOPEITIES ...t e 244
(001 FToi A 2= e 111110 o PP 244
Binary Filesand TranSlationcouuiiunioiiiee e e 244
VersioNEAMOUUIESc.uniiiii e ettt e et e e ea e 245
AULNENEICAIION ... e r e 245
Converting aRepository from CV St0 SUBVEISIONc.uviiniiiiii i ee e 245
B. TrouDIEShOOLING ...t 246
COMMONPIOBIEMS ... e e e 246

Vi

Version Control with Subversion

ProblemsUsiNg SUBVErSIONovviniii e 246

C. WEDLDAYV and AULOVEISIONINGvvveeeiieeitieeei e e e eet e e e eatseeet e e ea s estn e eaneean e eeanaeennaeees 252
BasiCWEDDAY CONCEPLS ... ieeeiiieeeii ettt e e et e e e e e e e 252
JUSEPIAINWEDDAY ... 252

DEltAY EXIENSIONS.cctieeiieeet et ettt et e e e et e et e e e e eanas 253
SUbVErSIONANADEITAV ...t 254
Mapping SULVErSIONTODEITAYcviiieii e e 254

WU 100)V7= £ o g H 1o 1S U o o o) o 254
Themod_dav_|0CK AITEMELIVEiiiiiiiiee e 255
Autoversioning INteroperabilityoveiiiiiiii e 256
WINB2WEDFOIAEN'S ... 256

= o1 @ 1 P 256
UNIX:NAULTTUSZ .. e e et 257

LINUX BTS2 ... e 257

D. THIrAdParty TOOIS ...cevieeeiiiii ettt ettt e e et e e e et e e e eabe e eeenes 258
ClIENtSANAPIUGINS ...ttt e e e 258
LanQUABgEBININGSc.. ettt ettt et e e e e eaas 258
REPOSITONY CONVEITEIS. ... eeeeete ettt ettt et e et e e e et e e et e ean e eaes 259
HIGher LeVE TOOIS...... i e e e s 259
REPOSItOry BrOWSING TOOIS ...uuuiei e et e e e e e e e e e e e et e e e e aaas 259
GlOSSANY ..ttt et et e et aeee 260

Vii

List of Figures

1.1, SUBVErSION'SATCRITECIUIE ...eevuiiiiiii e e e 3
2.1 ATypical Client/SErVEr SYSIEMuuieee e e e e e e e et e e e aan s 6
2.2. TheProbleMEOAVOIAcouiei e e e e e e e e et e e e e an s 7
2.3. TheLock-Modify-UnlOCK SOIULTONccuuuiiiiiiieeeeii e 8
2.4. TheCopy-Modify-Merge SOIULIONc.uiiiieei e e 9
2.5....Copy-Modify-MergeContiNUEoeiriiiii e e e e 10
2.6. The RePOSITONY'SFIESYSIEM ... i e e e e eaeeees 11
R I 11 = 001 1 o Y 14
4.1. BranchesSof DEVEIOPMENTiiiiiieiiii et 41
4.2. Starting REPOSITONY LAYOULceevuieeeiii ettt ettt e e 42
4.3. REPOSITOrY Wt NEW COPY ... ettt ettt e e e e e e e e eanaaees 44
4.4. TheBranching of ONeFIlESHISIONYcouiviiiiii e 45
8.1. Filesand DirectorieSin TWO DIMENSIONSuiiiiiiiiieiiiiie et e e e e e 133
8.2. Revisioning Time—the Third Dimension!ccooviiiiii i 134

viii

List of Tables

2.1. Repository AccessURLSs

6.1. Network Server Comparison

8.1. A Brief Inventory of the SUBVErsion Librariesuvveviiiiieiiiiic e

List of Examples

5.1. Using svnshell to Navigate the REPOSITONYccvuiiiiiiiiii e e e e e 74

5.2. txn-info.sh (Reporting Outstanding TranSaCtions)ccevuvvevnieriineeiieeeieee e e e e 76

6.1. A sample configuration for aNONYMOUSBCCESS.uuiiiiiiiieiiiii e 102
6.2. A sample configuration for authenticated aCCESS.covvviiieiiiiiiie e 102
6.3. A sample configuration for mixed authenticated/anonymouS aCCeSS.cccvvvevnveernneennnnnnnn 103
7.1. Sample Registration Entries (.reg) File.oiiiiiii e 111
8.1. USING thE REPOSITONY LAYES . .evuiiiii e et e e e e e e e e e et e e e e aan s 134
8.2. Using the Repository Layer With Pythonooiiiiiii e, 141
8.3. A Simple Script to Check Out aWOrKing COPY.ccvvuueiiiiiieieiiie et 142
8.4. Contentsof aTypical .SVN/ENtHESFIIEccoiiiiii e 143
8.5. EffeCtiVEPOOI USAQE ettt ettt e ea e 145

Foreword

A bad Frequently Asked Questions (FAQ) sheet is one that is composed not of the questions people ac-
tually asked, but of the questions the FAQ's author wished people had asked. Perhaps you've seen the
type before:

Q: How can | use Glorbosoft XY Z to maximize team productivity?

A: Many of our customers want to know how they can maximize productivity through
our patented office groupware innovations. The answer is smple: first, click on the
“Fi | € menu, scroll downto“l ncrease Productivity”,then...

The problem with such FAQs is that they are not, in aliteral sense, FAQs at all. No one ever called the
tech support line and asked, “How can we maximize productivity?’. Rather, people asked highly spe-
cific questions, like, “How can we change the calendaring system to send reminders two days in advance
instead of one?’ and so on. But it'salot easier to make up imaginary Frequently Asked Questions than it
is to discover the real ones. Compiling a true FAQ sheet requires a sustained, organized effort: over the
lifetime of the software, incoming questions must be tracked, responses monitored, and all gathered into
a coherent, searchable whole that reflects the collective experience of users in the wild. It cals for the
patient, observant attitude of a field naturalist. No grand hypothesizing, no visionary pronouncements
here—open eyes and accurate note-taking are what's needed most.

What | love about this book is that it grew out of just such a process, and shows it on every page. It is
the direct result of the authors' encounters with users. It began with Ben Collins-Sussman's observation
that people were asking the same basic questions over and over on the Subversion mailing lists: What
are the standard workflows to use with Subversion? Do branches and tags work the same way as in other
version control systems? How can | find out who made a particular change?

Frustrated at seeing the same questions day after day, Ben worked intensely over a month in the summer
of 2002 to write The Subversion Handbook, a sixty page manual that covered al the basics of using Sub-
version. The manua made no pretense of being complete, but it was distributed with Subversion and got
users over that initial hump in the learning curve. When O'Reilly and Associates decided to publish a
full-length Subversion book, the path of least resistance was obvious: just expand the Subversion hand-
book.

The three co-authors of the new book were thus presented with an unusua opportunity. Officialy, their
task was to write a book top-down, starting from a table of contents and an initial draft. But they also
had access to a steady stream—indeed, an uncontrollable geyser—of bottom-up source material. Subver-
sion was already in the hands of thousands of early adopters, and those users were giving tons of feed-
back, not only about Subversion, but about its existing documentation.

During the entire time they wrote this book, Ben, Mike, and Brian haunted the Subversion mailing lists
and chat rooms incessantly, carefully noting the problems real people were having in real situations. The
book they produced reflects this. Grounded firmly in the bedrock of experience, not in the shifting sands
of wishful thinking, it combines the best aspects of user manual and FAQ sheet. This duality might not
be noticeable on afirst reading. Taken in order, front to back, the book is smply a straightforward de-
scription of a piece of software. There's the overview, the obligatory guided tour, the chapter on admin-
istrative configuration, some advanced topics, and of course a command reference and troubleshooting
guide. Only when you come back to it later, seeking the solution to some specific problem, does its au-
thenticity shine out: the telling details that can only result from encounters with the unexpected, the ex-
amples honed from genuine use cases, and most of all the sensitivity to the user's needs and the user's
point of view.

Of course, no one can promise that this book will answer every question you have about Subversion.
Sometimes, the precision with which it anticipates your questions will seem eerily telepathic; yet occa-

Xi

Foreword

sionally, you will stumble into a hole in the community's knowledge, and come away empty-handed.
When this happens, the best thing you can do is email <user s@ubversion.tigris.org>and
present your problem. The authors are still there, still watching, and they include not just the three listed
on the cover, but many others who contributed corrections and original material. From the community's
point of view, solving your problem is merely a pleasant side effect of a much larger project—namely,
slowly adjusting this book, and ultimately Subversion itself, to more closely match the way people actu-
ally useit. They are eager to hear from you not merely because they can help you, but because you can
help them. With Subversion as with all active free software projects, you are not alone.

Let this book be your first companion.

— Karl Fogel, Chicago, 14 March, 2004

Xii

Preface

“If C gives you enough rope to hang yourself, think of Subversion as a sort of rope
storage facility.” —Brian W. Fitzpatrick

In the world of open-source software, the Concurrent Versions System (CVS) has long been the tool of
choice for version control. And rightly so. CVS itself is free software, and its non-restrictive modus
operandi and support for networked operation—which alow dozens of geographically dispersed pro-
grammers to share their work—fits the collaborative nature of the open-source world very well. CVS
and its semi-chaotic development model have become cornerstones of open-source culture.

But like many tools, CVSis starting to show its age. Subversion is a relatively new version control sys-
tem designed to be the successor to CVS. The designers set out to win the hearts of CVS usersin two
ways: by creating an open-source system with a design (and “look and feel”) similar to CVS, and by at-
tempting to fix most of CV S's noticeable flaws. While the result isn't necessarily the next great evolution
in version control design, Subversion is very powerful, very usable, and very flexible.

This book is written to document version 1.0.1 of the Subversion version control system. We have made
attempt to be thorough in our coverage. However, Subversion has a thriving and energetic devel opment
community, so there are already a number of features and improvements planned for future versions of
Subversion that may change some of the commands and specific notes in this book.

Audience

This book is written for computer literate folk who want to use Subversion to manage their data. While
Subversion runs on a number of different operating systems, its primary user interface is command-line
based. It is that command-line tool (svn) which is discussed and used in this book. For consistency, the
examples in this book assume the reader is using a Unix-like operating system, and is relatively comfort-
able with Unix and command-line interfaces.

That said, the svn program also runs on non-Unix platforms like Microsoft Windows. With a few minor
exceptions, such as the use of backward slashes (\) instead of forward slashes (/) for path separators,
the input to and output from this tool when run on Windows are identical to its Unix counterpart. How-
ever, Windows users may find more success by running the examples inside the Cygwin Unix emulation
environment.

Most readers are probably programmers or sysadmins who need to track changes to source code. Thisis
the most common use for Subversion, and therefore it is the scenario underlying al of the book's exam-
ples. But Subversion can be used to manage changes to any sort of information: images, music,
databases, documentation, and so on. To Subversion, all dataisjust data.

While this book is written with the assumption that the reader has never used version control, we've al'so
tried to make it easy for users of CVS to make a painless leap into Subversion. Special sidebars may dis-
cuss CV'S from time to time, and a special appendix summarizes most of the differences between CVS
and Subversion.

How to Read this Book

This book aims to be useful to people of widely different backgrounds—from people with no previous
experience in version control to experienced sysadmins. Depending on your own background, certain
chapters may be more or less important to you. The following can be considered a “recommended read-
ing list” for various types of readers:

Xiii

Preface

Experienced sysadmins
The assumption here is that you've probably used CV'S before, and are dying to get a Subversion
server up and running ASAP. Chapters 5 and 6 will show you how to create your first repository
and make it available over the network. After that's done, chapter 3 and appendix A are the fastest
routes to learning the Subversion client while drawing on your CV S experience.

New users
Your administrator has probably set up Subversion aready, and you need to learn how to use the
client. If you've never used a version control system (like CVS), then chapters 2 and 3 are avital in-
troduction. If you're aready an old hand at CVS, chapter 3 and appendix A are the best place to
Start.

Advanced users
Whether you're a user or administrator, eventually your project will grow larger. You're going to
want to learn how to do more advanced things with Subversion, such as how to use branches and
perform mergees (chapter 4), how to use Subversion's property support, how to configure runtime
options (chapter 7), and other things. Chapters 4 and 7 aren't vital at first, but be sure to read them
once you're comfortable with the basics.

Developers
Presumably, you're already familiar with Subversion, and now want to either extend it or build new
software on top of its many APIs. Chapter 8 isjust for you.

The book ends with reference materia—chapter 9 is a reference guide for all Subversion commands,
and the appendices cover a number of useful topics. These are the chapters you're mostly likely to come
back to after you've finished the book.

Conventions Used in This Book

This section covers the various conventions used in this book.

Typographic Conventions

lcons

Constant width
Used for commands, command output, and switches

Constant width italic
Used for replaceableitemsin code and text

Italic
Used for file and directory names

Note

Thisicon designates a note relating to the surrounding text.
Tip

Thisicon designates a helpful tip relating to the surrounding text.

Xiv

Preface

Warning
Thisicon designates awarning relating to the surrounding text.
Note that the source code examples are just that—examples. While they will compile with the proper

compiler incantations, they are intended to illustrate the problem at hand, not necessarily serve as exam-
ples of good programming style.

Organization of This Book

The chapters that follow and their contents are listed here:

Chapter 1, Introduction
Covers the history of Subversion as well as its features, architecture, components, and install meth-
ods.

Chapter 2, Basic Concepts
Explains the basics of version control and different versioning models, along with Subversion's
repository, working copies, and revisions.

Chapter 3, Guided Tour
Walks you through a day in the life of a Subversion user. It demonstrates how to use Subversion to
obtain, modify, and commit data.

Chapter 4, Branching and Merging
Discusses branches, merges, and tagging, including best practices for branching and merging, com-
mon use-cases, how to undo changes, and how to easily swing from one branch to the next.

Chapter 5, Repository Administration
Describes the basics of the Subversion repository, how to create, configure, and maintain a reposi-
tory, and the tools you can useto do all of this.

Chapter 6, Server Configuration
Explains how to configure your Subversion server and the three ways to access your repository:
HTTP, the svn protocol, and local access. It also covers the details of authentication, authorization
and anonymous access.

Chapter 7, Advanced Topics
Explores the Subversion client configuration files, file and directory properties, how to i gnor e
files in your working copy, how to include external trees in your working copy, and lastly, how to
handle vendor branches.

Chapter 8, Developer Information
Describes the internals of Subversion, the Subversion filesystem, and the working copy administra-
tive areas from a programmer's point of view. Demonstrates how to use the public APIs to write a
program that uses Subversion, and most importantly, how to contribute to the development of Sub-
version.

Chapter 9, Subversion Complete Reference
Explainsin great detail every subcommand of svn, svnadmin, and svnlook with plenty of examples
for the whole family!

Appendix A, Subversion for CVSUsers
Covers the similarities and differences between Subversion and CV'S, with numerous suggestions
on how to break al the bad habits you picked up from years of using CVS. Included are descrip-
tions of Subversion revision numbers, versioned directories, offline operations, update vs. status,

XV

This

Preface

branches, tags, metadata, conflict resolution, and authentication.

Appendix B, Troubleshooting
Addresses common problems and difficulties using and building Subversion.

Appendix C, WebDAYV and Autoversioning
Describes the details of WebDAV and DeltaV, and how you can configure your Subversion reposi-
tory to be mounted read/write asa DAV share.

Appendix D, Third Party Tools
Discusses tools that support or use Subversion, including aternative client programs, repository
browser tools, and so on.

Book is Free

This book started out as bits of documentation written by Subversion project developers, which were
then coalesced into a single work and rewritten. As such, it has always had the same free, open-source
license as Subversion itself. In fact, the book was written in the public eye, as a part of Subversion. This
means two things:

* You will alwaysfind the latest version of this book in Subversion's own source tree.

* You can distribute and make changes to this book however you wish—it's under a free license. Of
course, rather than distribute your own private version of this book, we'd much rather you send feed-
back and patches to the Subversion developer community. See the section called “ Contributing to
Subversion” to learn about joining this community.

Y ou can send publishing comments and questions to O'Reilly here: ###insert boilerplate.

A relatively recent online version of this book can befound at htt p: / / svnbook. r ed- bean. com

Acknowledgments

This book would not be possible (nor very useful) if Subversion did not exist. For that, the authors
would like to thank Brian Behlendorf and CollabNet for the vision to fund such a risky and ambitious
new Open Source project; Jim Blandy for the original Subversion name and design—we love you, Jm;
Karl Fogel for being such agood friend and a great community leader, in that order.

Thanks to O'Reilly and our editors, Linda Mui and Tatiana Diaz for their patience and support.

Finally, we thank the countless people who contributed to this book with informal reviews, suggestions,
and fixes. While this is undoubtedly not a complete list, this book would be incomplete and incorrect
without the help of: Jani Averbach, Ryan Barrett, Francois Beausoleil, Jennifer Bevan, Matt Blais, Zack
Brown, Martin Buchholz, Brane Cibgj, John R. Daily, Peter Davis, Olivier Davy, Robert P. J. Day, Mo
DelJong, Brian Denny, Joe Drew, Nick Duffek, Ben Elliston, Justin Erenkrantz, Shlomi Fish, Julian
Foad, Chris Foote, Martin Furter, Dave Gilbert, Eric Gillespie, Matthew Gregan, Art Haas, Greg Hud-
son, Alexis Huxley, Jens B. Jorgensen, Tez Kamihira, David Kimdon, Mark Benedetto King, Andreas J.
Koenig, Nuutti Kotivuori, Matt Kraai, Scott Lamb, Vincent Lefevre, Morten Ludvigsen, Paul Lussier,
Bruce A. Mah, Philip Martin, Feliciano Matias, Patrick Mayweg, Gareth McCaughan, Jon Middleton,
Tim Moloney, Mats Nilsson, Joe Orton, Amy Lyn Pilato, Kevin Pilch-Bisson, Dmitriy Popkov, Michael
Price, Mark Proctor, Steffen Prohaska, Daniel Rall, Tobias Ringstrom, Garrett Rooney, Joel Rosdahl,
Christian Sauer, Larry Shatzer, Russell Steicke, Sander Striker, Erik Sjoelund, Johan Sundstroem, John
Szakmeister, Mason Thomas, Eric Wadsworth, Colin Watson, Alex Waugh, Chad Whitacre, Josef Walf,
Blair Zajac, and the entire Subversion community.

10h, and thanks, Karl, for bei ng too overworked to write this book yourself.

XVi

From

From

From

Preface

Ben Collins-Sussman

Thanks to my wife Frances, who, for many months, got to hear, "But honey, I'm still working on the
book", rather than the usual, "But honey, I'm still doing email." | don't know where she gets al that pa-
tience! She's my perfect counterbalance.

Thanks to my extended family for their sincere encouragement, despite having no actual interest in the
subject. (Y ou know, the ones who say, "Ooh, you're writing a book?', and then when you tell them it'sa
computer book, sort of glaze over.)

Thanks to all my close friends, who make me a rich, rich man. Don't look at me that way—you know
who you are.

Brian W. Fitzpatrick

Huge thanks to my wife Marie for being incredibly understanding, supportive, and most of all, patient.
Thank you to my brother Eric who first introduced me to UNIX programming way back when. Thanks
to my Mom and Grandmother for all their support, not to mention enduring a Christmas holiday where |
came home and promptly buried my head in my laptop to work on the book.

To Mike and Ben: It was a pleasure working with you on the book. Heck, it's a pleasure working with
you at work!

To everyone in the Subversion community and the Apache Software Foundation, thanks for having me.
Not a day goes by where | don't learn something from at least one of you.

Lastly, thanks to my Grandfather who always told me that “freedom equals responsibility.” | couldn't
agree more.

C. Michael Pilato

Special thanks to my wife, Amy, for her love and patient support, for putting up with late nights, and for
even reviewing entire sections of this book—you always go the extra mile, and do so with incredible
grace. Gavin, when you're old enough to read, | hope you're as proud of your Daddy as he is of you.
Mom and Dad (and the rest of the family), thanks for your constant support and enthusiasm.

Hats off to Shep Kendall, through whom the world of computers was first opened to me; Ben Collins-
Sussman, my tour-guide through the open-source world; Karl Fogel—you are my . ermacs; Greg Stein,
for oozing practical programming know-how; Brian Fitzpatrick—for sharing this writing experience
with me. To the many folks from whom | am constantly picking up new knowledge—keep dropping it!

Finally, to the One who perfectly demonstrates creative excellence—thank you.

XVii

Chapter 1. Introduction

Version control is the art of managing changes to information. It has long been a critical tool for pro-
grammers, who typically spend their time making small changes to software and then undoing those
changes the next day. But the usefulness of version control software extends far beyond the bounds of
the software development world. Anywhere you can find people using computers to manage information
that changes often, there is room for version control. And that's where Subversion comes into play.

This chapter contains a high-level introduction to Subversion—what it is; what it does; how to get it.

What is Subversion?

Subversion is a free/open-source version control system. That is, Subversion manages files and directo-
ries over time. A tree of filesis placed into a central repository. The repository is much like an ordinary
file server, except that it remembers every change ever made to your files and directories. This alows
you to recover older versions of your data, or examine the history of how your data changed. In this re-
gard, many people think of aversion control system as a sort of “time machine”.

Subversion can access its repository across networks, which allows it to be used by people on different
computers. At some level, the ability for various people to modify and manage the same set of datafrom
their respective locations fosters collaboration. Progress can occur more quickly without a single conduit
through which all modifications must occur. And because the work is versioned, you need not fear that
quality is the trade-off for losing that conduit—if some incorrect change is made to the data, just undo
that change.

Some version control systems are also software configuration management (SCM) systems. These sys-
tems are specifically tailored to manage trees of source code, and have many features that are specific to
software development—such as natively understanding programming languages, or supplying tools for
building software. Subversion, however, is not one of these systems. It is a general system that can be
used to manage any collection of files. For you, those files might be source code—for others, anything
from grocery shopping lists to digital video mixdowns and beyond.

Subversion's History

In early 2000, CollabNet, Inc. (htt p: / / www. col | ab. net) began seeking developers to write are-
placement for CVS. CollabNet offers a collaboration software suite called SourceCast, of which one
component is version control. Although SourceCast used CVS as its initia version control system,
CVS's limitations were obvious from the beginning, and CollabNet knew it would eventually have to
find something better. Unfortunately, CV S had become the de facto standard in the open source world
largely because there wasn't anything better, at least not under a free license. So CollabNet determined
to write a new version control system from scratch, retaining the basic ideas of CVS, but without the
bugs and misfeatures.

In February 2000, they contacted Karl Fogel, the author of Open Source Development with CVS
(Corialis, 1999), and asked if he'd like to work on this new project. Coincidentally, at the time Karl was
aready discussing a design for a new version control system with his friend Jm Blandy. In 1995, the
two had started Cyclic Software, a company providing CV'S support contracts, and although they later
sold the business, they still used CV'S every day at their jobs. Their frustration with CV'S had led Jim to
think carefully about better ways to manage versioned data, and he'd already come up with not only the
name “ Subversion”, but also with the basic design of the Subversion repository. When CollabNet called,
Karl immediately agreed to work on the project, and Jim got his employer, RedHat Software, to essen-
tially donate him to the project for an indefinite period of time. CollabNet hired Karl and Ben Collins-
Sussman, and detailed design work began in May. With the help of some well-placed prods from Brian
Behlendorf and Jason Robbins of CollabNet, and Greg Stein (at the time an independent devel oper ac-

Introduction

tive in the WebDAV/DeltaV specification process), Subversion quickly attracted a community of active
developers. It turned out that many people had had the same frustrating experiences with CV'S, and wel-
comed the chance to finally do something about it.

The original design team settled on some simple goals. They didn't want to break new ground in version
control methodology, they just wanted to fix CVS. They decided that Subversion would match CVS's
features, and preserve the same development model, but not duplicate CVS's most obvious flaws. And
although it did not need to be a drop-in replacement for CVS, it should be similar enough that any CVS
user could make the switch with little effort.

After fourteen months of coding, Subversion became “self-hosting” on August 31, 2001. That is, Sub-
version developers stopped using CV'S to manage Subversion's own source code, and started using Sub-
version instead.

While CollabNet started the project, and still funds a large chunk of the work (it pays the salaries of a
few full-time Subversion developers), Subversion is run like most open-source projects, governed by a
loose, transparent set of rules that encourage meritocracy. CollabNet's copyright license is fully compli-
ant with the Debian Free Software Guidelines. In other words, anyone is free to download, modify, and
redistribute Subversion as he pleases; no permission from CollabNet or anyone else is required.

Subversion's Features

When discussing the features that Subversion brings to the version control table, it is often helpful to
speak of them in terms of how they improve upon CVS's design. If you're not familiar with CV'S, you
may not understand all of these features. And if you're not familiar with version control at all, your eyes
may glaze over unless you first read Chapter 2, Basic Concepts, in which we provide a gentle introduc-
tion to version control in general.

Subversion provides:

Directory versioning
CVS only tracks the history of individual files, but Subversion implements a “virtual” versioned
filesystem that tracks changes to whole directory trees over time. Files and directories are ver-
sioned.

True version history
Since CVSis limited to file versioning, operations such as copies and renames—which might hap-
pen to files, but which are really changes to the contents of some containing directory—aren't sup-
ported in CVS. Additionally, in CVS you cannot replace a versioned file with some new thing of the
same name without the new item inheriting the history of the old—perhaps completely unrelated—
file. With Subversion, you can add, delete, copy, and rename both files and directories. And every
newly added file begins awith afresh, clean history all its own.

Atomic commits
A collection of modifications either goes into the repository completely, or not at all. This allows
developers to construct and commit changes as logical chunks, and prevents problems that can oc-
cur when only aportion of a set of changes is successfully sent to the repository.

Versioned metadata
Each file and directory has a set of properties—keys and their values— associated with it. You can
create and store any arbitrary key/value pairs you wish. Properties are versioned over time, just like
file contents.

Choice of network layers
Subversion has an abstracted notion of repository access, making it easy for people to implement
new network mechanisms. Subversion can plug into the Apache HTTP Server as an extension mod-
ule. This gives Subversion a big advantage in stability and interoperability, and instant access to ex-

Introduction

isting features provided by that server—authentication, authorization, wire compression, and so on.
A more lightweight, standalone Subversion server process is also available. This server speaks a
custom protocol which can be easily tunneled over SSH.

Consistent data handling
Subversion expresses file differences using a binary differencing algorithm, which works identically
on both text (human-readable) and binary (human-unreadable) files. Both types of files are stored
equally compressed in the repository, and differences are transmitted in both directions across the
network.

Efficient branching and tagging
The cost of branching and tagging need not be proportional to the project size. Subversion creates
branches and tags by simply copying the project, using a mechanism similar to a hard-link. Thus
these operations take only avery small, constant amount of time.

Hackability
Subversion has no historical baggage; it is implemented as a collection of shared C libraries with

well-defined APIs. This makes Subversion extremely maintainable and usable by other applications
and languages.

Subversion's Architecture

Figure 1.1 illustrates what one might call a“mile-high” view of Subversion's design.

Figure 1.1. Subversion's Architecture

Introduction

commandline (A1)
dlient app client app
S —
) Client interface
L I
Warking copy
management | *—— Client library
library
L |
Repository acess
v VN Local
[
............. Ve llde |
Intermet
Apache
mod_DAV Il
mod_DAV_SYN SVIGErve

Subversion
repository

On one end is a Subversion repository that holds all of your versioned data. On the other end is your
Subversion client program, which manages local reflections of portions of that versioned data (called
“working copies’). Between these extremes are multiple routes through various Repository Access (RA)
layers. Some of these routes go across computer networks and through network servers which then ac-
cess the repository. Others bypass the network altogether and access the repository directly.

Installing Subversion

Subversion is built on a portability layer called APR (the Apache Portable Runtime library). This means
Subversion should work on any operating system that the Apache httpd server runs on: Windows, Linux,

al flavors of BSD, Mac OS X, Netware, and others.

The easiest way to get Subversion isto download a binary package built for your operating system. Sub-

Introduction

version's website (htt p: // subversion.tigris. org) often has these packages available for
download, posted by volunteers. The site usually contains graphical installer packages for users of Mi-
crosoft operating systems. If you run a Unix-like operating system, you can use your system's native
package distribution system (RPMs, DEBS, the ports tree, etc.) to get Subversion.

Alternately, you can build Subversion directly from source code. From the Subversion website, down-
load the latest source-code release. After unpacking it, follow the instructions in the | NSTALL file to
build it. Note that a released source package contains everything you need to build a command-line
client capable of talking to a remote repository (in particular, the apr, apr-util, and neon libraries). But
optional portions of Subversion have many other dependencies, such as Berkeley DB and possibly
Apache httpd. If you want to do a complete build, make sure you have all of the packages documented
inthe | NSTALL file. If you plan to work on Subversion itself, you can use your client program to grab
the latest, bleeding-edge source code. Thisis documented in the section called “ Get the Source Code”.

Subversion's Components

Subversion, once installed, has a number of different pieces. The following is a quick overview of what
you get. Don't be alarmed if the brief descriptions leave you scratching your head—there are plenty
more pages in this book devoted to alleviating that confusion.

svn
The command-line client program.

svnversion
A program for reporting the state (in terms of revisions of the items present) of aworking copy.

svnlook
A tool for inspecting a Subversion repository.

svhadmin
A tool for creating, tweaking or repairing a Subversion repository.

svndumpfilter
A program for filtering Subversion repository dumpfile format streams.

mod_dav_svn
A plug-in module for the Apache HTTP Server, used to make your repository available to others
over anetwork.

svnserve
A custom standalone server program, runnable as a daemon process or invokable by SSH; another
way to make your repository available to others over a network.

Assuming you have Subversion installed correctly, you should be ready to start. The next two chapters
will walk you through the use of svn, Subversion's command-line client program.

Chapter 2. Basic Concepts

This chapter is a short, casual introduction to Subversion. If you're new to version control, this chapter is
definitely for you. We begin with a discussion of genera version control concepts, work our way into
the specific ideas behind Subversion, and show some simple examples of Subversion in use.

Even though the examples in this chapter show people sharing collections of program source code, keep
in mind that Subversion can manage any sort of file collection—it's not limited to helping computer pro-
grammers.

The Repository

Subversion is a centralized system for sharing information. At its core is a repository, which is a central
store of data. The repository stores information in the form of a filesystem tree—a typical hierarchy of
files and directories. Any number of clients connect to the repository, and then read or write to these
files. By writing data, a client makes the information available to others; by reading data, the client re-
ceives information from others.

Figure 2.1. A Typical Client/Server System
Repaository

ﬁﬁﬁ

Client Client

So why is thisinteresting? So far, this sounds like the definition of atypical file server. And indeed, the
repository is a kind of file server, but it's not your usua breed. What makes the Subversion repository
special isthat it remembers every change ever written to it: every change to every file, and even changes
to the directory treeitself, such asthe addition, deletion, and rearrangement of files and directories.

When a client reads data from the repository, it normally sees only the latest version of the filesystem
tree. But the client also has the ability to view previous states of the filesystem. For example, aclient can
ask historical questions like, “What did this directory contain last Wednesday?’ or “Who was the last
person to change this file, and what changes did they make?’ These are the sorts of questions that are at
the heart of any version control system: systems that are designed to record and track changes to data
over time.

Versioning Models
The Problem of File-Sharing

Basic Concepts

All version control systems have to solve the same fundamental problem: how will the system allow
users to share information, but prevent them from accidentally stepping on each other's feet? It's all too
easy for users to accidentally overwrite each other's changes in the repository.

Consider this scenario: suppose we have two co-workers, Harry and Sally. They each decide to edit the
same repository file at the same time. If Harry saves his changes to the repository first, then it's possible
that (afew moments later) Sally could accidentally overwrite them with her own new version of thefile.
While Harry's version of the file won't be lost forever (because the system remembers every change),
any changes Harry made won't be present in Sally's newer version of the file, because she never saw
Harry's changes to begin with. Harry's work is still effectively lost—or at least missing from the latest
version of the file—and probably by accident. Thisis definitely a situation we want to avoid!

Figure2.2. The Problem to Avoid

Two wsers read the same file They both begin fo edit their copies
Repository Repository
A A

I_ fend Read —1
Ly s
)]]
Harry Sally Harry Sally
Harry publishes his version first Sally accidentally overwriles Harry's version
Repository

Sally Harry

The Lock-Modify-Unlock Solution

Many version control systems use a lock-modify-unlock model to address this problem, which is a very
simple solution. In such a system, the repository allows only one person to change afile at atime. First
Harry must “lock” the file before he can begin making changes to it. Locking afileis alot like borrow-
ing a book from the library; if Harry has locked afile, then Sally cannot make any changes to it. If she
tries to lock the file, the repository will deny the request. All she can do is read the file, and wait for
Harry to finish his changes and release his lock. After Harry unlocks the file, his turn is over, and now
Sally can take her turn by locking and editing.

Basic Concepts

Figure 2.3. The L ock-Modify-Unlock Solution

Harry “lacks” file 4, then copies While Harry edits, Sally's lack
it for ecliting attempt faits
Repository Repository

1] A

ek |
I rend Lock
]

Harry Sally Harry Sally
Harry writes his version, then Now Seily can lock, read, and
releases his lock edit the lotest version
Repository Repository

. :%l
5

Harry Sally Harry Sally

The problem with the lock-modify-unlock model is that it's a bit restrictive, and often becomes a road-
block for users:

Locking may cause administrative problems. Sometimes Harry will lock afile and then forget about
it. Meanwhile, because Sally is still waiting to edit the file, her hands are tied. And then Harry goes
on vacation. Now Sally has to get an administrator to release Harry's lock. The situation ends up
causing alot of unnecessary delay and wasted time.

Locking may cause unnecessary serialization. What if Harry is editing the beginning of a text file,
and Sally simply wants to edit the end of the same file? These changes don't overlap at all. They
could easily edit the file simultaneously, and no great harm would come, assuming the changes were
properly merged together. There's no need for them to take turnsin this situation.

Locking may create a false sense of security. Pretend that Harry locks and edits file A, while Sally
simultaneously locks and edits file B. But suppose that A and B depend on one another, and the
changes made to each are semantically incompatible. Suddenly A and B don't work together any-
more. The locking system was powerless to prevent the problem—yet it somehow provided a false
sense of security. It's easy for Harry and Sally to imagine that by locking files, each is beginning a

8

Basic Concepts

safe, insulated task, and thus inhibits them from discussing their incompatible changes early on.

The Copy-Modify-Merge Solution

Subversion, CV'S, and other version control systems use a copy-modify-merge model as an alternative to
locking. In this model, each user's client contacts the project repository and creates a persona working
copy—a local reflection of the repository’s files and directories. Users then work in parallel, modifying
their private copies. Finally, the private copies are merged together into a new, final version. The version
control system often assists with the merging, but ultimately a human being is responsible for making it
happen correctly.

Here's an example. Say that Harry and Sally each create working copies of the same project, copied
from the repository. They work concurrently, and make changes to the same file A within their copies.
Sally saves her changes to the repository first. When Harry attempts to save his changes later, the reposi-
tory informs him that hisfile A is out-of-date. In other words, that file A in the repository has somehow
changed since he last copied it. So Harry asks his client to merge any new changes from the repository
into his working copy of file A. Chances are that Sally's changes don't overlap with his own; so once he
has both sets of changes integrated, he saves his working copy back to the repository.

Figure 2.4. The Copy-M odify-M er ge Solution

Two users copy the same fite They both begin fo edit their copies
Repository Repository
A A

I—ﬁ'-md Hmdj' ‘ h
2] 2]

Harry Sally Harry Sally
Sally publishes her version first Harey gets an “pul-of-dafe“error
Repository Repository
[

Sally

Basic Concepts

Figure 2.5. ...Copy-Modify-Merge Continued

Harry compares the latest version A mew merged version is created
T his oum
Repository Repository

ﬁ
Read
.I‘I | I.I | rrl-)

Harry Sally Harry Sally
The merged version is published Now both wsers have each
athers changes
Repository Repository
[

- WIJ'I’E—I Read

Sally Harry Sally

But what if Sally's changes do overlap with Harry's changes? What then? This situation is called a con-
flict, and it's usually not much of a problem. When Harry asks his client to merge the latest repository
changes into his working copy, his copy of file A is somehow flagged as being in a state of conflict: he'll
be able to see both sets of conflicting changes, and manually choose between them. Note that software
can't automatically resolve conflicts; only humans are capable of understanding and making the neces-
sary intelligent choices. Once Harry has manually resolved the overlapping changes—perhaps after a
discussion with Sally—he can safely save the merged file back to the repository.

The copy-modify-merge model may sound a bit chaotic, but in practice, it runs extremely smoothly.
Users can work in parallel, never waiting for one another. When they work on the samefiles, it turns out
that most of their concurrent changes don't overlap at al; conflicts are infrequent. And the amount of
timeit takesto resolve conflictsis far less than the time lost by alocking system.

In the end, it all comes down to one critical factor: user communication. When users communicate
poorly, both syntactic and semantic conflicts increase. No system can force users to communicate per-
fectly, and no system can detect semantic conflicts. So there's no point in being lulled into a false
promise that a locking system will somehow prevent conflicts; in practice, locking seems to inhibit pro-
ductivity more than anything else.

10

Basic Concepts

Subversion in Action
Working Copies

Y ou've aready read about working copies; now we'll demonstrate how the Subversion client creates and
uses them.

A Subversion working copy is an ordinary directory tree on your local system, containing a collection of
files. You can edit these files however you wish, and if they're source code files, you can compile your
program from them in the usual way. Y our working copy is your own private work area: Subversion will
never incorporate other people's changes, nor make your own changes available to others, until you ex-
plicitly tell it to do so.

After you've made some changes to the files in your working copy and verified that they work properly,
Subversion provides you with commands to “publish” your changes to the other people working with
you on your project (by writing to the repository). If other people publish their own changes, Subversion
provides you with commands to merge those changes into your working directory (by reading from the
repository).

A working copy also contains some extra files, created and maintained by Subversion, to help it carry
out these commands. In particular, each directory in your working copy contains a subdirectory named
. svn, aso known as the working copy administrative directory. The files in each administrative direc-
tory help Subversion recognize which files contain unpublished changes, and which files are out-of-date
with respect to others' work.

A typical Subversion repository often holds the files (or source code) for several projects; usualy, each
project is a subdirectory in the repository's filesystem tree. In this arrangement, a user's working copy
will usually correspond to a particular subtree of the repository.

For example, suppose you have arepository that contains two software projects.

Figure 2.6. The Repository's Filesystem

11

Basic Concepts

k |

calc |

—* Makefile

p

integer.c

L

L L

button.c

—-| paint |

Makefile

fanvas.C

/Lol

- brush.c

In other words, the repository's root directory has two subdirectories: pai nt andcal c.

To get aworking copy, you must check out some subtree of the repository. (The term “check out” may
sound like it has something to do with locking or reserving resources, but it doesn't; it smply creates a
private copy of the project for you.) For example, if you check out / cal ¢, you will get aworking copy
likethis:

$ svn checkout http://svn.exanpl e.comrepos/calc
A calc

A cal c/ Makefile

A calc/integer.c

A calc/button.c

$
Ma

Is -a calc
kefile integer.c button.c .svn/

The list of letter A's indicates that Subversion is adding a number of items to your working copy. You
now have a persona copy of the repository's /cal ¢ directory, with one additiona
entry—. svn—which holds the extra information needed by Subversion, as mentioned earlier.

Repository URL s

Subversion repositories can be accessed through many different methods—on local disk, or through var-

12

Basic Concepts

ious network protocols. A repository location, however, is aways a URL. The URL schema indicates
the access method:

Table 2.1. Repository AccessURL s

Schema Access M ethod

file://l] direct repository access (on local disk)

http:// access via WebDAV protocol to Subversion-aware
Apache server

https:// sameashtt p://, but with SSL encryption.

svn:// access via custom protocol to an svnserve
server

svn+ssh:// sameassvn: /[, but through an SSH tunnel.

For the most part, Subversion's URL s use the standard syntax, allowing for server names and port num-
bers to be specified as part of the URL. Remember that thefi | e: access method is valid only for loca
tions on the same server as the client—in fact, in accordance with convention, the server name portion
of the URL isrequired to be either absent or | ocal host :

$ svn checkout file:///path/to/repos

$ svn checkout file://|ocal host/path/to/repos

Also, users of the fi | e: scheme on Windows platforms will need to use an unofficially “standard”
syntax for accessing repositories that are on the same machine, but on a different drive than the client's
current working drive. Either of the two following URL path syntaxes will work where X is the drive on
which the repository resides:

C.\> svn checkout file:///X /path/tolrepos
C:\> svn checkout "file: /11X /path/to/repos"

In the second syntax, you need to quote the URL so that the vertical bar character is not interpreted as a
pipe.

Note that a URL uses ordinary slashes even though the native (non-URL) form of a path on Windows
uses backslashes.

Suppose you make changes to but t on. c. Since the . svn directory remembers the file's modification
date and original contents, Subversion can tell that you've changed the file. However, Subversion does
not make your changes public until you explicitly tell it to. The act of publishing your changes is more
commonly known as committing (or checking in) changes to the repository.

To publish your changes to others, you can use Subversion's commit command:

$ svn conmit button.c
Sendi ng button.c

13

Basic Concepts

Transmitting file data .
Committed revision 57.

Now your changes to but t on. ¢ have been committed to the repository; if another user checks out a
working copy of / cal c, they will see your changesin the latest version of thefile.

Suppose you have a collaborator, Sally, who checked out a working copy of / cal ¢ at the same time
you did. When you commit your changeto but t on. ¢, Sally's working copy is left unchanged; Subver-
sion only modifies working copies at the user's request.

To bring her project up to date, Sally can ask Subversion to update her working copy, by using the Sub-
version update command. Thiswill incorporate your changes into her working copy, as well as any oth-
ers that have been committed since she checked it out.

pwd
/hone/sal ly/cal c

$1s -a
.svn/ Makefile integer.c button.c

$ svn update
U button.c

The output from the svn update command indicates that Subversion updated the contents of but -
t on. c. Note that Sally didn't need to specify which files to update; Subversion uses the information in
the . svn directory, and further information in the repository, to decide which files need to be brought
up to date.

Revisions

An svn commit operation can publish changes to any number of files and directories as a single atomic
transaction. In your working copy, you can change files contents, create, delete, rename and copy files
and directories, and then commit the complete set of changes as a unit.

In the repository, each commit is treated as an atomic transaction: either all the commit's changes take
place, or none of them take place. Subversion tries to retain this atomicity in the face of program
crashes, system crashes, network problems, and other users' actions.

Each time the repository accepts a commit, this creates a new state of the filesystem tree, called arevi-
sion. Each revision is assigned a unique natural number, one greater than the number of the previous re-
vision. The initia revision of afreshly created repository is numbered zero, and consists of nothing but
an empty root directory.

A nice way to visualize the repository is as a series of trees. Imagine an array of revision numbers, start-

ing at 0, stretching from left to right. Each revision number has a filesystem tree hanging below it, and
each treeis a“snapshot” of the way the repository looked after each commit.

Figure2.7. The Repository

14

Basic Concepts

L/~ LsLsLs

F |) -
| AL LAl

Global Revision Numbers

Unlike those of many other version control systems, Subversion's revision numbers apply to entire trees,
not individua files. Each revision number selects an entire tree, a particular state of the repository after
some committed change. Another way to think about it is that revision N represents the state of the
repository filesystem after the Nth commit. When a Subversion user talks about “revision 5 of f 0o. c”,
they really mean “f 00. ¢ asit appearsin revision 5.” Notice that in general, revisions N and M of afile
do not necessarily differ! Because CV'S uses per-file revisions numbers, CV'S users might want to see
Appendix A, Subversion for CVSUsers for more details.

It's important to note that working copies do not always correspond to any single revision in the reposi-
tory; they may contain files from several different revisions. For example, suppose you check out a
working copy from arepository whose most recent revision is 4:

cal c/ Makefile: 4
integer.c:4
button.c: 4

At the moment, this working directory corresponds exactly to revision 4 in the repository. However,
suppose you make a change to but t on. ¢, and commit that change. Assuming no other commits have
taken place, your commit will create revision 5 of the repository, and your working copy will now look
likethis:

cal c/ Makefile: 4
integer.c:4
button.c:5

Suppose that, at this point, Sally commits a changeto i nt eger . c, creating revision 6. If you use svn

15

Basic Concepts

update to bring your working copy up to date, then it will look like this:

cal c/ Makefile: 6
integer.c:6
button.c: 6

Sally's changesto i nt eger . ¢ will appear in your working copy, and your change will still be present
in but t on. c. In this example, the text of Makefi | e isidentical in revisions 4, 5, and 6, but Subver-
sion will mark your working copy of Makef i | e with revision 6 to indicate that it is still current. So, af-
ter you do a clean update at the top of your working copy, it will generally correspond to exactly one re-
vision in the repository.

How Working Copies Track the Repository

For each file in a working directory, Subversion records two essential pieces of information in the
. svn/ administrative area:

» what revision your working fileis based on (thisis called the file's working revision), and

» atimestamp recording when the local copy was last updated by the repository.

Given this information, by talking to the repository, Subversion can tell which of the following four
statesaworking fileisin:

Unchanged, and current
The file is unchanged in the working directory, and no changes to that file have been committed to
the repository since its working revision. A svn commit of the file will do nothing, and an svn up-
date of the file will do nothing.

Locally changed, and current
The file has been changed in the working directory, and no changes to that file have been commit-
ted to the repository since its base revision. There are local changes that have not been committed to
the repository, thus an svn commit of the file will succeed in publishing your changes, and an svn
update of the file will do nothing.

Unchanged, and out-of-date
The file has not been changed in the working directory, but it has been changed in the repository.
The file should eventually be updated, to make it current with the public revision. An svn commit
of the file will do nothing, and an svn update of the file will fold the latest changes into your work-

ing copy.

Locally changed, and out-of-date
The file has been changed both in the working directory, and in the repository. An svn commit of
the file will fail with an “out-of-date” error. The file should be updated first; an svn update com-
mand will attempt to merge the public changes with the local changes. If Subversion can't complete
the merge in a plausible way automatically, it leavesit to the user to resolve the conflict.

This may sound like a lot to keep track of, but the svn status command will show you the state of any
item in your working copy. For more information on that command, see the section called “ svn status”.

The Limitations of Mixed Revisions

Asageneral principle, Subversion tries to be as flexible as possible. One special kind of flexibility isthe

16

Basic Concepts

ability to have aworking copy containing mixed revision numbers.

At first, it may not be entirely clear why this sort of flexibility is considered a feature, and not aliability.
After completing a commit to the repository, the freshly committed files and directories are at more re-
cent working revision than the rest of the working copy. It looks like a bit of a mess. As demonstrated
earlier, the working copy can always be brought to a single working revision by running svn update.
Why would someone deliberately want a mixture of working revisions?

Assuming your project is sufficiently complex, you'll discover that it's sometimes nice to forcibly back-
“date” portions of your working copy to an earlier revision; you'll learn how to do that in Chapter 3. Per-
haps you'd like to test an earlier version of a sub-module, contained in a subdirectory, or perhaps you'd
like to examine a number of previous versions of afile in the context of the latest tree.

However you make use of mixed-revisions in your working copy, there are limitations to this flexibility.
First, you cannot commit the deletion of afile or directory which isn't fully up-to-date. If a newer ver-
sion of the item existsin the repository, your attempt to delete will be rejected, to prevent you from acci-
dentally destroying changes you've not yet seen.

Second, you cannot commit a metadata change to a directory unless it's fully up-to-date. You'll learn
about attaching “properties’ to items in Chapter 6. A directory's working revision defines a specific set

of entries and properties, and thus committing a property change to an out-of-date directory may destroy
properties you've not yet seen.

Summary

We've covered a number of fundamental Subversion conceptsin this chapter:
« We've introduced the notions of the central repository, the client working copy, and the array of
repository revision trees.

» We've seen some simple examples of how two collaborators can use Subversion to publish and re-
ceive changes from one another, using the ‘copy-modify-merge’ model.

» Wevetaked abit about the way Subversion tracks and manages information in aworking copy.
At this point, you should have a good idea of how Subversion works in the most general sense. Armed

with this knowledge, you should now be ready to jump into the next chapter, which is a detailed tour of
Subversion's commands and features.

17

Chapter 3. Guided Tour

Now we will go into the details of using Subversion. By the time you reach the end of this chapter, you
will be able to perform almost all the tasks you need to use Subversion in a normal day's work. You'll
start with an initial checkout of your code, and walk through making changes and examining those
changes. You'll also see how to bring changes made by others into your working copy, examine them,
and work through any conflicts that might arise.

Note that this chapter is not meant to be an exhaustive list of all Subversion's commands—rather, it's a
conversational introduction to the most common Subversion tasks you'll encounter. This chapter as-
sumes that you've read and understood Chapter 2, Basic Concepts and are familiar with the general
model of Subversion. For a complete reference of all commands, see Chapter 9, Subversion Complete
Reference.

Help!

Before reading on, here is the most important command you'll ever need when using Subversion: svn
help. The Subversion command-line client is self-documenting—at any time, a quick svn help sub-
<command> will describe the syntax, switches, and behavior of the subcommand.

Import

You use svn import to import a new project into a Subversion repository. While this is most likely the
very first thing you will do when you set up your Subversion server, it's not something that happens very
often. For a detailed description of import, see the section called “svn import” later in this chapter.

Revisions: Numbers, Keywords, and Dates, Oh

My!

Before we go on, you should know a bit about how to identify a particular revision in your repository.
Asyou learned in the section called “Revisions’, arevision is a“snapshot” of the repository at a particu-
lar moment in time. As you continue to commit and grow your repository, you need a mechanism for
identifying these snapshots.

You specify these revisions by using the - - r evi si on (- r) switch plus the revision you want (svn -
-revision REV) or you can specify a range by separating two revisions with a colon (svn --revision
REV1:REV?2). And Subversion lets you refer to these revisions by number, keyword, or date.

Revision Numbers

When you create a hew Subversion repository, it begins its life at revision zero and each successive
commit increases the revision number by one. After your commit completes, the Subversion client in-
forms you of the new revision number:

$ svn commit --nmessage "Corrected number of cheese slices.”
Sendi ng sandwi ch. t xt

Transmtting file data .

Conmitted revision 3.

If at any point in the future you want to refer to that revision (we'll see how and why we might want to

18

Guided Tour

do that later in this chapter), you can refer to it as“3".

Revision Keywords

The Subversion client understands a number of revision keywords. These keywords can be used instead
of integer arguments to the - - r evi si on switch, and are resolved into specific revision numbers by
Subversion:

Note

Each directory in your working copy contains an . svn administrative area. For every filein a
directory, Subversion keeps a copy of each file in the administrative area. This copy is an un-
modified (no keyword expansion, no end-of-line tranglation, no nothing) copy of the file as it
existed in the last revision (called the “BASE” revision) that you updated it to in your working
copy. We refer to this file as the pristine copy or text-base version of your file, and it's always
an exact byte-for-byte copy of thefile asit exists in the repository.

HEAD
The latest revision in the repository.

BASE
The “pristine” revision of an item in aworking copy.

COMMITTED
Thelast revision in which an item changed before (or at) BASE.

PREV
Therevision just before the last revision in which an item changed. (Technically, COMM TTED- 1.)

Here are some examples of revision keywords in action. Don't worry if the commands don't make sense
yet; we'll be explaining these commands as we go through the chapter:

svn diff --revision PREV: COWM TTED f oo0.c
shows the |last change comitted to foo.c

svn |l og --revision HEAD
shows | og nessage for the latest repository commt

svn di ff --revision HEAD
conpares your working file (with local nbds) to the |atest version
in the repository.

svn di ff --revision BASE: HEAD f 0o. c
conpares your “pristine” foo.c (no local nods) with the
| atest version in the repository

svn |l og --revision BASE: HEAD
shows all commit |ogs since you | ast updated

svn update --revision PREV foo.c
rewi nds the | ast change on foo.c.
(foo.c's working revision is decreased.)

HHHE HH HHEAL HHHE HHE HO

These keywords allow you to perform many common (and helpful) operations without having to look up
specific revision numbers or remember the exact revision of your working copy.

19

Guided Tour

Revision Dates

Anywhere that you specify arevision number or revision keyword, you can aso specify a date by speci-
fying the date inside curly braces “{}”. Y ou can even access a range of changes in the repository using
both dates and revisions together!

Here are examples of the date formats that Subversion accepts. Remember to use quotes around any date
that contains spaces.

svn checkout --revision {2002-02-17}

svn checkout --revision {15: 30}

svn checkout --revision {15:30:00.200000}

svn checkout --revision {"2002-02-17 15: 30"}

svn checkout --revision {"2002-02-17 15:30 +0230"}
svn checkout --revision {2002-02-17T15: 30}

svn checkout --revision {2002-02-17T15: 307}

svn checkout --revision {2002-02-17T15: 30-04: 00}
svn checkout --revision {20020217T1530}

svn checkout --revision {20020217T1530Z}

svn checkout --revision {20020217T1530- 0500}

When you specify a date as a revision, Subversion finds the most recent revision of the repository as of
that date:

$ svn log --revision {2002-11-28}

ri2 | ira | 2002-11-27 12:31:51 -0600 (Wed, 27 Nov 2002) | 6 lines

Is Subversion a Day Early?

If you specify a single date as a revision without specifying atime of day (for example 2002- 11- 27),
you may think that Subversion should give you the last revision that took place on the 27th of Novem-
ber. Instead, you'll get back a revision from the 26th, or even earlier. Remember that Subversion will
find the most recent revision of the repository as of the date you give. If you give a date without a times-
tamp, like 2002- 11- 27, Subversion assumes a time of 00:00:00, so looking for the most recent revi-
sion won't return anything on the day of the 27th.

If you want to include the 27th in your search, you can either specify the 27th with the time
({"2002-11-27 23:59"}), orjust specify the next day ({ 2002- 11- 28}).

You can aso use arange of dates. Subversion will find all revisions between both dates, inclusive:

$ svn log --revision {2002-11-20}:{2002-11-29}

Aswe pointed out, you can also mix dates and revisions:

$ svn log --revision {2002-11-20}: 4040

20

Guided Tour

Users should be aware of a subtlety that can become quite a stumblingblock when dealing with datesin
Subversion. Since the timestamp of a revision is stored as a property of the revision—an unversioned,
modifiable property—revision timestamps can be changed to represent complete falsifications of true
chronology, or even removed altogether. This will wreak havoc on the internal date-to-revision conver-
sion that Subversion performs.

Initial Checkout

Most of the time, you will start using a Subversion repository by doing a checkout of your project.
Checking out a repository creates a copy of it on your local machine. This copy contains the HEAD
(latest revision) of the Subversion repository that you specify on the command line:

$ svn checkout http://svn.collab. net/repos/svn/trunk
A trunk/subversion. dsw

A trunk/svn_check. dsp

A trunk/ COW TTERS

A trunk/configure.in

A trunk/ | DEAS

éﬁecked out revision 2499.

Repository L ayout

If you're wondering what t r unk is all about in the above URL, it's part of the way we recommend you
lay out your Subversion repository which we'll talk a lot more about in Chapter 4, Branching and Merg-

ing.

Although the above example checks out the trunk directory, you can just as easily check out any deep
subdirectory of arepository by specifying the subdirectory in the checkout URL :

$ svn checkout http://svn.collab. net/repos/svn/trunk/doc/book/tools
A tools/readne-dblite. htni
A tool s/fo-styl esheet. xsl
A tool s/svnbook. el

A tools/dtd

A tools/dtd/dblite.dtd

'Cl:llﬂecked out revision 3678.

Since Subversion uses a “copy-modify-merge’” model instead of “lock-modify-unlock” (see Chapter 2,
Basic Concepts), you're already able to start making changes to the files and directories in your working
copy. Your working copy is just like any other collection of files and directories on your system. You
can edit and change them, move them around, you can even delete the entire working copy and forget
about it.

Note

While your working copy is “just like any other collection of files and directories on your sys-
tem”, you need to let Subversion know if you're going to be rearranging anything inside of your
working copy. If you want to copy or move an item in a working copy, you should use svn
copy or svn move instead of the copy and move commands provided by your operating system.
WEe'l talk more about them later in this chapter.

21

Guided Tour

Unless you're ready to commit anew file or directory, or changes to existing ones, there's no need to fur-
ther notify the Subversion server that you've done anything.

What'swith the. svn directory?

Every directory in a working copy contains an administrative area, a subdirectory named . svn. Usu-
ally, directory listing commands won't show this subdirectory, but it is nevertheless an important direc-
tory. Whatever you do, don't delete or change anything in the administrative area! Subversion depends
on it to manage your working copy.

While you can certainly check out a working copy with the URL of the repository as the only argument,
you can aso specify adirectory after your repository URL. This places your working copy into the new
directory that you name. For example:

$ svn checkout http://svn.collab. net/repos/svn/trunk subv
A subv/subversion. dsw

A subv/svn_check. dsp

A subv/ COW TTERS

A subv/configure.in

A subv/ | DEAS

aﬂecked out revision 2499.

That will place your working copy in a directory named subv instead of a directory named t r unk as
we did previoudly.

Basic Work Cycle

Subversion has numerous features, options, bells and whistles, but on a day-to-day basis, odds are that
you will only use a few of them. In this section well run through the most common things that you
might find yourself doing with Subversion in the course of a day's work.

Thetypical work cycle looks like this:

» Update your working copy

e svnupdate

» Make changes

* svnadd

* svndelete
e svn copy
e svn move

» Examine your changes

22

Guided Tour

e svn status
¢ svn diff

* svnrevert
* Merge others changes

+ svnmerge

* svnresolved
* Commit your changes

e svn commit

Update Your Working Copy

When working on a project with ateam, you'll want to update your working copy to receive any changes
made since your last update by other developers on the project. Use svn update to bring your working
copy into sync with the latest revision in the repository.

$ svn update

U foo.c

U bar.c

Updated to revision 2.

In this case, someone else checked in modifications to both f 00. ¢ and bar . ¢ since the last time you
updated, and Subversion has updated your working copy to include those changes.

Let's examine the output of svn update a bit more. When the server sends changes to your working
copy, aletter code is displayed next to each item to let you know what actions Subversion performed to
bring your working copy up-to-date:

U foo
Filef oo was Updated (received changes from the server).

A foo
File or directory f oo was Added to your working copy.

D foo
File or directory f oo was Deleted from your working copy.

R foo
File or directory f 0o was Replaced in your working copy; that is, f 00 was deleted, and anew item
with the same name was added. While they may have the same name, the repository considers them
to be distinct objects with distinct histories.

G foo
Filef oo received new changes from the repository, but your local copy of the file had your modifi-

23

Guided Tour

cations. The changes did not intersect, however, so Subversion has merGed the repository's changes
into the file without a problem.

C foo
File f 0o received Conflicting changes from the server. The changes from the server directly over-
lap your own changes to the file. No need to panic, though. This overlap needs to be resolved by a
human (you); we discuss this situation later in this chapter.

Make Changes to Your Working Copy

Now you can get to work and make changes in your working copy. It's usually most convenient to de-
cide on a particular change (or set of changes) to make, such as writing a new feature, fixing a bug, etc.
The Subversion commands that you will use here are svn add, svn delete, svn copy, and svn move.
However, if you are merely editing afile (or files) that is already in Subversion, you may not need to use
any of these commands until you commit. Changes you can make to your working copy:

File changes
This is the simplest sort of change. Y ou don't need to tell Subversion that you intend to change a
file; just make your changes. Subversion will be able to automatically detect which files have been
changed.

Tree changes
You can ask Subversion to “mark” files and directories for scheduled removal, addition, copying, or
moving. While these changes may take place immediately in your working copy, no additions or re-
movals will happen in the repository until you commit them.

To make file changes, use your text editor, word processor, graphics program, or whatever tool you
would normally use. Subversion handles binary files just as easily as it handles text files—and just as ef-
ficiently too.

Here is an overview of the four Subversion subcommands that you'll use most often to make tree
changes (welll cover svn import and svn mkdir later).

svn add foo
Schedule f 00 to be added to the repository. When you next commit, f oo will become a child of its
parent directory. Note that if f 00 is a directory, everything underneath f oo will be scheduled for
addition. If you only want to schedule f oo itself, passthe - - non-r ecur si ve (- N) switch.

svn delete foo
Schedule f 00 to be deleted from the repository. If f 0o isafile, it isimmediately deleted from your
working copy. If f oo isadirectory, it is not deleted, but Subversion schedules it for deletion. When
you commit your changes, f 0o will be removed from your working copy and the repository.

svn copy foo bar
Create a new item bar as a duplicate of f 00. bar is automatically scheduled for addition. When
bar isadded to the repository on the next commit, its copy-history is recorded (as having originally
come from f 00).

svn move foo bar
This command is exactly the same as running svn copy foo bar; svn delete foo. That is, bar is
scheduled for addition as a copy of f 00, and f 00 is scheduled for removal.

%of course, nothing is ever totally deleted from the repository—just from the HEAD of the repository. Y ou can get back anything
you delete by checking out (or updating your working copy) arevision earlier than the one in which you deleted it.

24

Guided Tour

Changing the Repository Without a Working Copy

Earlier in this chapter, we said that you have to commit any changes that you make in order for the
repository to reflect these changes. That's not entirely true—there are some use-cases that immediately
commit tree changes to the repository. This only happens when a subcommand is operating directly on a
URL, rather than on a working-copy path. In particular, specific uses of svn mkdir, svn copy, svn
move, and svn delete can work with URLS.

URL operations behave in this manner because commands that operate on a working copy can use the
working copy as a sort of “staging area’ to set up your changes before committing them to the reposi-
tory. Commands that operate on URLs don't have this luxury, so when you operate directly on a URL,
any of the above actions represent an immediate commit.

Examine Your Changes

Once you've finished making changes, you need to commit them to the repository, but before you do so,
it's usually a good idea to take a look at exactly what you've changed. By examining your changes be-
fore you commit, you can make a more accurate log message. Y ou may also discover that you've inad-
vertently changed a file, and this gives you a chance to revert those changes before committing. Addi-
tionally, thisis a good opportunity to review and scrutinize changes before publishing them. Y ou can see
exactly what changes you've made by using svn status, svn diff, and svn revert. You will usualy use
the first two commands to find out what files have changed in your working copy, and then perhaps the
third to revert some (or al) of those changes.

Subversion has been optimized to help you with thistask, and is able to do many things without commu-
nicating with the repository. In particular, your working copy contains a secret cached “pristine” copy of
each version controlled file within the . svn area. Because of this, Subversion can quickly show you
how your working files have changed, or even alow you to undo your changes without contacting the
repository.

svn status

You'll probably use the svn status command more than any other Subversion command.

CVSUsers: Hold That Update!

You're probably used to using cvs update to see what changes you've made to your working copy. svn
status will give you all the information you need regarding what has changed in your working
copy—without accessing the repository or potentially incorporating new changes published by other
users.

In Subversion, update does just that—it updates your working copy with any changes committed to the
repository since the last time you've updated your working copy. You'll have to break the habit of using
the update command to see what local modifications you've made.

If you run svn status at the top of your working copy with no arguments, it will detect al file and tree
changes you've made. This example is designed to show all the different status codes that svn status can
return. (Note that the text following # in the following example is not actually printed by svn status.)

$ svn status
L abc. c # svn has a lock inits .svn directory for abc.c
M bar.c # the content in bar.c has |ocal nodifications

25

Guided Tour

i ncompl e

M baz. c # baz.c has property but no content nodifications
? foo.o # svn doesn't manage fo0o0.0

! sone_dir # svn manages this, but it's either mssing or
~ qux # versioned as dir, but is file, or vice versa
A + noved dir # added with history of where it came from

M + nmoved_di r/ READVE # added with history and has | ocal nodifications
D stuff/fish.c # this file is scheduled for deletion
A stuff/l oot/ bl oo.h # this file is scheduled for addition
C stuff/loot/lunmp.c # this file has conflicts froman update

S stuff/squawk # this file or dir has been switched to a branch

In this output format svn status prints five columns of characters, followed by several whitespace char-
acters, followed by afile or directory name. The first column tells the status of afile or directory and/or
its contents. The codes printed here are:

Afile or _dir
Thefileor directory fi | e_or _di r hasbeen scheduled for addition into the repository.

Cfile
file_or_dir isinastate of conflict. That is, changes received from the server during an update
overlap with local changes that you have in your working copy. You must resolve this conflict be-
fore committing your changes to the repository.

Dfile or _dir
Thefileor directory fi | e_or _di r hasbeen scheduled for deletion from the repository.

Mfile
The contents of filef i | e have been modified.

Xdir
The directory di r is unversioned, but is related to a Subversion externals definition. To find out
more about external s definitions, see the section called “ Externals Definitions’.

? file_or _dir
The file or directory fil e_or _dir is not under version control. You can silence the question
marks by either passing the - - qui et (- q) switch to svn status, or by setting the svn: i gnore
property on the parent directory. For more information on ignored files, see the section called
“svniignore”.

I file_or_dir
The file or directory fi | e_or _di r is under version control but is missing or somehow incom-
plete. The item can be missing if it's removed using a hon-Subversion command. In the case of a di-
rectory, it can be incomplete if you happened to interrupt a checkout or update. A quick svn update
will refetch the file or directory from the repository, or svn revert file will restore amissing file.

~ file_or_dir
Thefile or directory fi | e_or _di r isin the repository as one kind of object, but what's actually
in your working copy is some other kind. For example, Subversion might have afile in the reposi-
tory, but you removed the file and created a directory in its place, without using the svn delete or
svn add commands.

The second column tells the status of a file or directory's properties (see the section called “ Properties’
for more information on properties). If an Mappears in the second column, then the properties have been
modified, otherwise a whitespace will be printed.

The third column will only show whitespace or an L which means that Subversion has locked theitemin
the . svn working area. You will see an L if you run svn status in a directory where an svn commit is

26

Guided Tour

in progress—perhaps when you are editing the log message. If Subversion is not running, then presum-
ably Subversion was interrupted and the lock needs to be cleaned up by running svn cleanup (more
about that |ater in this chapter).

The fourth column will only show whitespace or a + which means that the file or directory is scheduled
to be added or modified with additional attached history. This typically happens when you svn move or
svn copy afileor directory. If yousee A+, this means the item is scheduled for addition-with-history.
It could be afile, or the root of a copied directory. + means the item is part of a subtree scheduled for
addition-with-history, i.e. some parent got copied, and it's just coming along for the ride. M + means
the item is part of a subtree scheduled for addition-with-history, and it has local modifications. When
you commit, first the parent will be added-with-history (copied), which means this file will automati-
cally exist in the copy. Then the local modifications will be uploaded into the copy.

The fifth column will only show whitespace or an S. This signifies that the file or directory has been
switched from the path of the rest of the working copy (using svn switch) to a branch.

If you pass a specific path to svn status, it gives you information about that item alone:

$ svn status stuff/fish.c
D stuff/fish.c

svn status also has a - - ver bose (- v) switch, which will show you the status of every item in your
working copy, evenif it has not been changed:

$ svn status --verbose

M 44 23 sal ly READVE
44 30 sal ly | NSTALL
M 44 20 harry bar. c
44 18 ira stuff
44 35 harry stuff/trout. c
44 19 ira stuff/fish
44 21 sally stuff/thin
0 ? ? stuff/thlngs/bloo h
44 36 harry stuff/things/gloo.c

Thisisthe “long form” output of svn status. The first column remains the same, but the second column
shows the working-revision of the item. The third and fourth columns show the revision in which the
item last changed, and who changed it.

None of the above invocations to svn status contact the repository, they work only locally by comparing
the metadatain the . svn directory with the working copy. Finaly, thereisthe - - show updat es -
(u) switch, which contacts the repository and adds information about things that are out-of-date:

$ svn stat us --show updates --verbose
M 44 23 sally README
M 44 20 harry bar. c
* 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
A 0 ? ? stuff/things/bloo.h
St at us agai nst revi sion: 46

Notice the two asterisks: if you were to run svn update at this point, you would receive changes to
README and t r out . ¢. Thistells you some very useful information—you'll need to update and get the
server changes on READVE before you commit, or the repository will reject your commit for being out-
of-date. (More on this subject later.)

27

Guided Tour

svn diff

Another way to examine your changes is with the svn diff command. You can find out exactly how
you've mod'éfied things by running svn diff with no arguments, which prints out file changes in unified
diff format:

$ svn diff
| ndex: bar.c

--- bar.c (revision 3)
+++ bar.c (working copy)
@»-1,7 +1,12 @@

+#i ncl ude <sys/types. h>
+#i ncl ude <sys/stat. h>
+#i ncl ude <uni std. h>

+

+#i ncl ude <stdio. h>

int mai n(void) {

- printf("Sixty-four slices of Anerican Cheese...\n");
+ printf("Sixty-five slices of Anerican Cheese...\n");
return O;

}
| ndex: README

--- README (revision 3)

+++ README (wor ki ng copy)
@-193,3 +193,4 @@

+Note to self: pick up laundry.

| ndex: stuff/fish.c

--- stuff/fish.c (revision 1)

+++ stuff/fish.c (working copy)
-Welcone to the file known as 'fish'.
-Information on fish will be here soon.

I ndex: stuff/things/bloo.h

--- stuff/things/bloo.h (revision 8)
+++ stuff/things/bloo.h (working copy)
+Here is a new file to describe

+t hi ngs about bl oo.

The svn diff command produces this output by comparing your working files against the cached pris-
“ting” copieswithin the. svn area. Files scheduled for addition are displayed as all added-text, and files
scheduled for deletion are displayed as all deleted text.

Output is displayed in unified diff format. That is, removed lines are prefaced with a- and added lines
are prefaced with a +. svn diff aso prints filename and offset information useful to the patch program,
SO you can generate “patches’ by redirecting the diff output to afile:

$ svn diff > patchfile

Y ou could, for example, email the patchfile to another developer for review or testing prior to commit.

3subversion usesits internal diff engine, which produces unified diff format, by default. If you want diff output in a different for-
mat, specify an external diff program using - - di f f - cnd and pass any flags you'd like to it using the - - ext ensi ons switch.
For example, to see local differences in file f 00. ¢ in context output format while ignoring whitespace changes, you might run
“svn diff --diff-cmd /usr/bin/diff --extensions'-bc' foo.c”.

28

Guided Tour

svn revert

Now suppose you see the above diff output, and realize that your changes to READVE are a mistake;
perhaps you accidentally typed that text into the wrong file in your editor.

Thisis a perfect opportunity to use svn revert.

$ svn revert README
Reverted ' READVE

Subversion reverts the file to its pre-modified state by overwriting it with the cached “pristine’ copy
from the . svn area. But also note that svn revert can undo any scheduled operations—for example,
you might decide that you don't want to add a new file after all:

$ svn status foo
? foo

$ svn add foo
A foo

$ svn revert foo
Reverted ' foo'

$ svn status foo
? f oo

Note

svn revert | TEM has exactly the same effect as deleting | TEM from your working copy and
then running svn update -r BASE | TEM However, if you're reverting a file, svn revert has
one very noticeable difference—it doesn't have to communicate with the repository to restore
your file.

Or perhaps you mistakenly removed afile from version control:
$ svn status READMVE
READVE

$ svn del et e READMVE
D READNME

$ svn revert README
Reverted ' READVE

$ svn status READMVE
READNME

Look Ma! No Network!

All three of these commands (svn status, svn diff, and svn revert) can be used without any network ac-
cess. This makes it easy to manage your changes-in-progress when you are somewhere without a net-
work connection, such astraveling on an airplane, riding a commuter train or hacking on the beach.

Subversion does this by keeping private caches of pristine versions of each versioned file inside of the

29

Guided Tour

. svn administrative areas. This allows Subversion to report—and revert—|ocal maodifications to those
files without network access. This cache (called the “text-base”) also allows Subversion to send the
user's local modifications during a commit to the server as a compressed delta (or “difference”) against
the pristine version. Having this cache is a tremendous benefit—even if you have a fast net connection,
it's much faster to send only afile's changes rather than the whole file to the server. At first glance, this
might not seem that important, but imagine the repercussions if you try to commit a one line changeto a
400MB file and have to send the whole file to the server!

Resolve Conflicts (Merging Others' Changes)

We've aready seen how svn status -u can predict conflicts. Suppose you run svn update and some in-
teresting things occur:

$ svn update

U | NSTALL
G README
C bar.c

Updated to revision 46.

The U and G codes are no cause for concern; those files cleanly absorbed changes from the repository.
The files marked with U contained no local changes but were Updated with changes from the repository.
The G stands for merGed, which means that the file had local changes to begin with, but the changes
coming from the repository didn't overlap in any way.

But the C stands for conflict. This means that the changes from the server overlapped with your own,
and now you have to manually choose between them.

Whenever a conflict occurs, three things occur to assist you in noticing and resolving that conflict:

Subversion prints a C during the update, and remembers that the fileisin a state of conflict.

Subversion places conflict markers—special strings of text which delimit the “sides’ of the
conflict—into the file to visibly demonstrate the overlapping areas.

For every conflicted file, Subversion places three extra filesin your working copy:

fil ename. m ne
Thisisyour file asit existed in your working copy before you updated your working copy—that is,
without conflict markers. Thisfile has your latest changesin it and nothing el se.

fil ename. r OLDREV
This is the file that was the BASE revision before you updated your working copy. That is, the file
that you checked out before you made your latest edits.

fil enanme. r NEVREV
This is the file that your Subversion client just received from the server when you updated your
working copy. Thisfile corresponds to the HEAD revision of the repository.

Here OLDREV is the revision number of the filein your . svn directory and NEWREV is the revision
number of the repository HEAD.

For example, Sally makes changes to the file sandwi ch. t xt in the repository. Harry has just changed

30

Guided Tour

the file in his working copy and checked it in. Sally updates her working copy before checking in and
she gets a conflict:

$ svn update

C sandw ch. t xt
Updated to revision 2.
$1s -1

sandwi ch. t xt

sandwi ch. t xt. m ne
sandwi ch.txt.r1l

sandwi ch.txt.r2

At this point, Subversion will not allow you to commit the file sandwi ch. t xt until the three tempo-
rary files are removed.

$ svn commit --nmessage "Add a few nore things"
svn: Commit failed (details follow):
svn: Aborting commit: '/hone/sally/svn-work/sandw ch.txt' remains in conflict

If you get a conflict, you need to do one of three things:

» Maergethe conflicted text “by hand” (by examining and editing the conflict markers within thefile).
» Copy one of the temporary files on top of your working file.

* Runsvnrevert <filename> to throw away al of your local changes.

Once you've resolved the conflict, you need to let Subversion know by running svn resolved. This re-
moves the three temporary files and Subversion no longer considers the file to be in a state of conflict.

$ svn resol ved sandw ch. t xt
Resol ved conflicted state of 'sandw ch.txt'

Merging Conflicts by Hand

Merging conflicts by hand can be quite intimidating the first time you attempt it, but with a little prac-
tice, it can become as easy asfalling off abike.

Here's an example. Let's say that, due to a miscommunication between you and your collaborator, Sally,
both edit the file named sandwi ch. t xt at the same time. Sally commits her changes, and when you
go to update your working copy, you get a conflict and we're going to have to edit sandwi ch. t xt to
resolve the conflicts. First, let's take alook at thefile:

$ cat sandw ch.t xt
Top piece of bread
Mayonnai se

Lettuce

Tonat o

Pr ovol one

<LKLLLL .M he

Sal am

“You can always remove the temporary files yourself, but would you really want to do that when Subversion can do it for you?
We didn't think so.

31

Guided Tour

Mort adel | a
Prosciutto

Sauer kr aut
Gilled Chicken
SSSS>S>S> 1 2

Creol e Mustard
Bott om pi ece of bread

The strings of less-than signs, equal signs, and greater-than signs are conflict markers, and are not part
of the actua datain conflict. You generally want to ensure that those are removed from the file before
your next commit. The text between the first two sets of markers is composed of the changes you made
in the conflicting area:

<<<<<<< . m ne
Sal ami

Mort adel | a
Prosciutto

Sauer kr aut
Gilled Chicken
>S>>S>>>> 12

Usually you won't want to just delete the conflict markers and Sally's changes—she's going to be aw-
fully surprised when the sandwich arrives and it's not what she wanted. So this is where you pick up the
phone or walk across the office and explain to Sally that you can't get sauerkraut from an Italian deli.
Once you've agreed on the changes you will check in, edit your file and remove the conflict markers.

Top piece of bread
Mayonnai se

Lettuce

Tonat o

Pr ovol one

Sal am

Mort adel | a

Prosciutto

Creole Miustard

Bott om pi ece of bread

Now run svn resolved, and you're ready to commit your changes:

$ svn resol ved sandwi ch. t xt
$ svn commit -m"CGo ahead and use nmy sandw ch, discarding Sally's edits."

Remember, if you ever get confused while editing the conflicted file, you can always consult the three
files that Subversion creates for you in your working copy—including your file as it was before you up-
dated. Y ou can even use a third-party interactive merging tool to examine those three files.

Copying a File Onto Your Working File

Sand if you ask them for it, they may very well ride you out of town on arail.

32

Guided Tour

If you get a conflict and decide that you want to throw out your changes, you can merely copy one of the
temporary files created by Subversion over the file in your working copy:

$ svn update

C sandwi ch. t xt

Updated to revision 2.

$ |I's sandwi ch. *

sandwi ch.txt sandwich.txt.nne sandwich.txt.r2 sandwi ch.txt.rl
$ cp sandwich. txt.r2 sandw ch. t xt

$ svn resol ved sandwi ch. t xt

Punting: Using svn revert

If you get a conflict, and upon examination decide that you want to throw out your changes and start
your edits again, just revert your changes:

$ svn revert sandw ch. t xt
Reverted 'sandw ch. t xt'

$ |I's sandwi ch. *

sandwi ch. t xt

Note that when you revert a conflicted file, you don't have to run svn resolved.

Now you're ready to check in your changes. Note that svn resolved, unlike most of the other commands
we've dealt with in this chapter, requires an argument. In any case, you want to be careful and only run
svn resolved when you're certain that you've fixed the conflict in your file—once the temporary files are
removed, Subversion will let you commit the file even if it still contains conflict markers.

Commit Your Changes

Finally! Your edits are finished, you've merged all changes from the server, and you're ready to commit
your changes to the repository.

The svn commit command sends all of your changes to the repository. When you commit a change, you
need to supply alog message, describing your change. Y our log message will be attached to the new re-
vision you create. If your log message is brief, you may wish to supply it on the command line using the
- - message (or -) option:

$ svn commit --nessage "Corrected nurmber of cheese slices.”
Sendi ng sandwi ch. t xt

Transmtting file data .

Committed revision 3.

However, if you've been composing your log message as you work, you may want to tell Subversion to
get the message from afile by passing the filename with the- - f i | e switch:

$ svn commit --file | ognsg
Sendi ng sandwi ch
Transmtting file data .
Committed revision 4.

If you fail to specify either the - - message or - - fi | e switch, then Subversion will automatically

33

Guided Tour

launch your favorite editor (as defined in the environment variable $EDI TOR) for composing alog mes-
sage.

Tip

If you're in your editor writing a commit message and decide that you want to cancel your com-
mit, you can just quit your editor without saving changes. If you've aready saved your commit
message, simply delete the text and save again.

$ svn commit
Waiting for Enmacs...Done

Log nmessage unchanged or not specified
a)bort, c)ontinue, e)dit

a

$

The repository doesn't know or care if your changes make any sense as a whole; it only checks to make
sure that nobody else has changed any of the same files that you did when you weren't looking. If some-
body has done that, the entire commit will fail with a message informing you that one or more of your
filesis out-of-date:

$ svn commit --nessage "Add another rule"
Sendi ng rul es.txt

svn: Commit failed (details follow):

svn: Qut of date: 'rules.txt' in transaction

g

At this point, you need to run svn update, deal with any merges or conflicts that result, and attempt your
commit again.

That covers the basic work cycle for using Subversion. There are many other features in Subversion that
you can use to manage your repository and working copy, but you can get by quite easily using only the
commands that we've discussed so far in this chapter.

Examining History

As we mentioned earlier, the repository is like a time machine. It keeps a record of every change ever
committed, and alows you to explore this history by examining previous versions of files and
directories as well as the metadata that accompanies them. With a single Subversion command, you can
check out the repository (or restore an existing working copy) exactly as it was at any date or revision
number in the past. However, sometimes you just want to peer into the past instead of going into the
past.

There are several commands that can provide you with historical data from the repository:

svn log
Shows you broad information; log messages attached to revisions, and which paths changed in each
revision.

svn diff
Shows you the specific details of how afile changed over time.

svn cat
Thisis used to retrieve any file as it existed in a particular revision number and display it on your
screen.

34

Guided Tour

svn list
Displaysthefilesin adirectory for any given revision.

svn log

To find out information about the history of afile or directory, use the svn log command. svn log will
provide you with a record of who made changes to afile or directory, at what revision it changed, the
time and date of that revision, and, if it was provided, the log message that accompanied the commit.

$ svn log

r3 | sally | Mon, 15 Jul 2002 18:03:46 -0500 | 1 line

Added include lines and corrected # of cheese slices.

r2 | harry | Mon, 15 Jul 2002 17:47:57 -0500 | 1 line
Added mai n() nethods.

ri | sally | Mn, 15 Jul 2002 17:40:08 -0500 | 1 line
Initial inport

Note that the log messages are printed in reverse chronological order by default. If you wish to see a
different range of revisions in a particular order, or just a single revision, passthe - - r evi si on (- r)

switch:

$ svn log --revision 5:19 # shows logs 5 through 19 in chronol ogi cal order
$ svn log -r 19:5 # shows logs 5 through 19 in reverse order

$ svn log -r 8 # shows |l og for revision 8

Y ou can also examine the log history of asinglefile or directory. For example:

$ svn log foo.c

$ svn | og http://foo.com svn/trunk/code/foo.c

These will display log messages only for those revisions in which the working file (or URL) changed.

If you want even more information about a file or directory, svn log also takes a - - ver bose (- v)
switch. Because Subversion allows you to move and copy files and directories, it isimportant to be able
to track path changes in the filesystem, so in verbose mode, svn log will include a list of changed paths
inarevision in its output:

| sally | 2002-07-14 08:15:29 -0500 | 1 line
Changed pat hs:
U /trunk/code/foo.c

35

Guided Tour

U /trunk/ code/ bar. h
A /trunk/ code/ doc/ READVE

Frozzl ed the sub-space w nch.

Why Does svn log Give Me an Empty Response?

After working with Subversion for a bit, most users will come across something like this:

$ svn log -r 2

At first glance, this seems like an error. But recall that while revisions are repository-wide, svn log oper-
ates on a path in the repository. If you supply no path, Subversion uses the current working directory as
the default target. As aresult, if you're operating in a subdirectory of your working copy and attempt to
log arevision in which neither that directory nor any of its children was changed, Subversion will give
you an empty log. If you want to see what changed in that revision, try pointing svn log directly at the
top-most URL of your repository, asin svn log -r 2 http://svn.collab.net/repos/svn.

svn diff

We've dready seen svn diff before—it displays file differences in unified diff format; it was used to
show the local modifications made to our working copy before committing to the repository.

In fact, it turns out that there are three distinct uses of svn diff:

» Examinelocal changes
» Compare your working copy to the repository

» Compare repository to repository

Examining Local Changes

As we've seen, invoking svn diff with no switches will compare your working files to the cached pris-
“tine” copiesinthe. svn area:

$ svn diff
I ndex: rul es.txt

--- rules.txt (revision 3)
+++ rul es.txt (working copy)
@-1,4 +1,5 @
Be kind to others
Freedom = Responsibility
Everything i n noderation
-Chew wi th your mouth open
+Chew wi th your nouth cl osed
gLi sten when others are speaking

36

Guided Tour

Comparing Working Copy to Repository

If asingle - - r evi si on (- r) number is passed, then your working copy is compared to the specified
revision in the repository.

$ svn diff --revision 3 rul es.txt
| ndex: rul es.txt

--- rules.txt (revision 3)
+++ rul es.txt (working copy)
@@-1,4 +1,5 @@

Be kind to others

Freedom = Responsibility

Everyt hing i n noderation
-Chew with your nouth open
+Chew wi th your nouth cl osed
%Li sten when others are speaking

Comparing Repository to Repository

If two revision numbers, separated by a colon, are passed via - - r evi si on (- r), then the two revi-
sions are directly compared.

$ svn diff --revision 2:3 rul es.txt
| ndex: rul es.txt

--- rules.txt (revision 2)
+++ rules.txt (revision 3)
@@-1,4 +1,4 @@
Be kind to others
- Freedom = Chocol ate I ce Cream
+Freedom = Responsibility
Everyt hing i n noderation
$CheM/mAth your nouth cl osed

Not only can you use svn diff to compare filesin your working copy to the repository, but if you supply
a URL argument, you can examine the differences between items in the repository without even having
aworking copy. Thisis especialy useful if you wish to inspect changesin a file when you don't have a
working copy on your local machine:

$ svn diff --revision 4:5 http://svn.red-bean. confrepos/exanpl e/trunk/text/rules.t

$

svn cat

If you want to examine an earlier version of afile and not necessarily the differences between two files,
you can use svn cat:

$ svn cat --revision 2 rules.txt

37

Guided Tour

Be kind to others

Freedom = Chocol ate Ice Cream
Everyt hing i n noderation

Chew with your nouth cl osed

Y ou can also redirect the output directly into afile:

$ svn cat --revision 2 rules.txt > rules.txt.v2

Y ou're probably wondering why we don't just use svn update --revision to update the file to the older
revision. There are afew reasons why we might prefer to use svn cat.

First, you may want to see the differences between two revisions of afile using an external diff program
(perhaps a graphical one, or perhaps your file is in such a format that the output of unified diff is non-
sensical). In this case, you'll need to grab a copy of the old revision, redirect it to afile, and pass both
that and the file in your working copy to your external diff program.

Sometimes it's easier to look at an older version of afilein its entirety as opposed to just the differences
between it and another revision.

svn list

The svn list command shows you what files are in a repository directory without actually downloading
the files to your local machine:

$ svn list http://svn.collab.net/repos/svn
READVE

branches/

clients/

t ags/

t runk/

If you want amore detailed listing, passthe - - ver bose (- v) flag to get output like this.

$ svn list --verbose http://svn.coll ab. net/repos/svn

2755 harry 1331 Jul 28 02: 07 README
2773 sally Jul 29 15:07 branches/
2769 sally Jul 29 12:07 clients/
2698 harry Jul 24 18:07 tags/
2785 sally Jul 29 19: 07 trunk/

The columns tell you the revision at which the file or directory was last modified, the user who modified
it, thesizeif itisafile, the date it was last modified, and the item's name.

A Final Word on History

In addition to al of the above commands, you can use svn up%ate and svn checkout with the -
- revi si on switch to take an entire working copy “back intime” ~:

$ svn checkout --revision 1729 # Checks out a new working copy at r1729

Bsee?Wetold you that Subversion was a time machine.

38

Guided Tour

$ svn update --revision 1729 # Updates an existing working copy to r1729

Other Useful Commands

While not as frequently used as the commands previously discussed in this chapter, you will occasion-
ally need these commands.

svn cleanup

When Subversion modifies your working copy (or any information within . svn), it tries to do so as
safely as possible. Before changing anything, it writes its intentions to alog file, executes the commands
in the log file, then removes the log file (thisis similar in design to ajournaled filesystem). If a Subver-
sion operation isinterrupted (if the processiskilled, or if the machine crashes, for example), the log files
remain on disk. By re-executing the log files, Subversion can complete the previously started operation,
and your working copy can get itself back into a consistent state.

And thisis exactly what svn cleanup does: it searches your working copy and runs any |eftover logs, re-
moving locks in the process. If Subversion ever tells you that some part of your working copy is
“locked”, then this is the command that you should run. Also, svn status will display an L next to
locked items:

$ svn status
L sonedir
M sonedir/foo.c

$ svn cl eanup
$ svn status
M sonedir/foo.c

svn import
The svn import command is a quick way to copy an unversioned tree of filesinto arepository.

$ svnadm n create /usr/local/svn/ new epos
$ svn import nytree file:///usr/local/svn/ new epos/fooproject

Addi ng nytree/foo.c
Addi ng nytreel/ bar.c
Addi ng nytree/ subdir
Addi ng nmyt r ee/ subdi r/ quux. h

Committed revision 1.

The above example copied the contents of directory nyt r ee under the directory f oopr oj ect in the
repository:

f ooproj ect/foo.c
fooproject/bar.c

fooproj ect/subdir

f oopr o] ect/ subdi r/ quux. h

~ Y~

39

Guided Tour

Summary

Now we've covered most of the Subversion client commands. Notable exceptions are those dealing with
branching and merging (see Chapter 4, Branching and Merging) and properties (see the section called
“Properties’). However, you may want to take a moment to skim through Chapter 9, Subversion
Complete Reference to get an idea of all the many different commands that Subversion has—and how
you can use them to make your work easier.

40

Chapter 4. Branching and Merging

Branching, tagging, and merging are concepts common to aimost al version control systems. If you're
not familiar with these ideas, we provide a good introduction in this chapter. If you are familiar, then
hopefully you'll find it interesting to see how Subversion implements these ideas.

Branching is a fundamental part of version control. If you're going to alow Subversion to manage your
data, then thisis afeature you'll eventually come to depend on. This chapter assumes that you're already
familiar with Subversion's basic concepts (Chapter 2, Basic Concepts).

What's a Branch?

Suppose it's your job to maintain a document for a division in your company, a handbook of some sort.
One day a different division asks you for the same handbook, but with a few parts ‘tweaked' for them,
since they do things dightly differently.

What do you do in this situation? Y ou do the obvious thing: you make a second copy of your document,
and begin maintaining the two copies separately. As each department asks you to make small changes,
you incorporate them into one copy or the other.

Y ou often want to make the same change to both copies. For example, if you discover atypo in the first
copy, it's very likely that the same typo exists in the second copy. The two documents are almost the
same, after all; they only differ in small, specific ways.

This is the basic concept of a branch—namely, a line of development that exists independently of an-

other line, yet still shares acommon history if you look far enough back in time. A branch aways begins
life as a copy of something, and moves on from there, generating its own history.

Figure 4.1. Branches of Development

3rd branch

15t branch

¥

Original line of development

¥

Znd branch

time (-E}

Subversion has commands to help you maintain parallel branches of your files and directories. It allows
you to create branches by copying your data, and remembers that the copies are related to one another. It
also helps you duplicate changes from one branch to another. Finaly, it can make portions of your
working copy reflect different branches, so that you can “mix and match” different lines of development
in your daily work.

Using Branches

At this point, you should understand how each commit creates an entire new filesystem tree (caled a

41

Branching and Merging

revision”) in the repository. If not, go back and read about revisions in the section called “ Revisions'.

For this chapter, we'll go back to the same example from Chapter 2. Remember that you and your col-
laborator, Sally, are sharing a repository that contains two projects, pai nt and cal c. Notice, how-
ever, that each project directory now contains subdirectoriesnamed t r unk and br anches. The reason
for thiswill soon become clear.

Figure4.2. Starting Repository L ayout

(]

= ak —
—
P
[L=
= trunk -
[b=
e
*| branches
= paint I —
—
o W
[
*=| trunk .
[I
o —

*| branches

As before, assume that Sally and you both have working copies of the “calc” project. Specificaly, you
each have aworking copy of / cal ¢/t r unk. All thefiles for the project are in this subdirectory (rather
than in/ cal c itself, because your team has decided that / cal ¢/ t r unk is where the “main line” of
development is going to take place.

Let's say that you've been given the task of performing aradical reorganization of the project. It will take
along time to write, and will affect al the filesin the project. The problem here is that you don't want to
interfere with Sally, who is in the process of fixing small bugs here and there. She's depending on the
fact that the latest version of the project (in/ cal ¢/t r unk) is always usable. If you start committing
your changes bit-by-bit, you'll surely break things for Sally.

One strategy is to crawl into a hole: you and Sally can stop sharing information for a week or two. That
is, start gutting and reorganizing all the files in your working copy, but don't commit or update until
you're completely finished with the task. There are a number of problems with this, though. Firgt, it's not
very safe. Most people like to save their work to the repository frequently, should something bad acci-
dentally happen to their working copy. Second, it's not very flexible. If you do your work on different
computers (perhaps you have a working copy of / cal ¢/t runk on two different machines), you'l
need to manually copy your changes back and forth, or just do all the work on a single computer. By that
same token, it's difficult to share your changes-in-progress with anyone else. A common software devel-

42

Branching and Merging

opment “best practice” isto alow your peers to review your work as you go. If nobody sees your inter-
mediate commits, you lose potential feedback. Finally, when you're finished with all your changes, you
might find it very difficult to re-merge your final work with the rest of the company's main body of
code. Sally (or others) may have made many other changes in the repository that are difficult to incorpo-
rate into your working copy—especially if you run svn update after weeks of isolation.

The better solution is to create your own branch, or line of development, in the repository. This allows
you to save your half-broken work frequently without interfering with others, yet you can till selec-
tively share information with your collaborators. Y ou'll see exactly how this works later on.

Creating a Branch

Creating a branch is very simple—you make a copy of the project in the repository using the svn copy
command. Subversion is not only able to copy single files, but whole directories as well. In this case,
you want to make a copy of the/ cal ¢/t r unk directory. Where should the new copy live? Wherever
you wish—it's a matter of project policy. Let's say that your team has a policy of creating branches in
the/ cal ¢/ br anches area of the repository, and you want to name your branch my- cal c- br anch.
You'll want to create a new directory, / cal ¢/ br anches/ ny- cal c- br anch, which beginsits life
asacopy of / cal ¢/ trunk.

There are two different ways to make a copy. We'll demonstrate the messy way first, just to make the
concept clear. To begin, check out aworking copy of the project's root directory, / cal c:

$ svn checkout http://svn. exanpl e. com repos/cal c bi guwc
A bigwe/trunk/

A bigwe/trunk/ Makefile

A bigwe/trunk/integer.c

A bigwe/trunk/button.c

A bi gwe/ branches/

Checked out revision 340.

Making a copy is now simply a matter of passing two working-copy paths to the svn copy command:

$ cd bigwe

$ svn copy trunk/ branches/my-cal c-branch
$ svn status

A + branches/ my- cal c- branch

In this case, the svn copy command recursively copiesthet r unk/ working directory to a new working
directory, br anches/ ny- cal c- br anch. Asyou can see from the svn status command, the new di-
rectory is now scheduled for addition to the repository. But also notice the “+” sign next to the letter A.
This indicates that the scheduled addition is a copy of something, not something new. When you commit
your changes, Subversion will create / cal ¢/ br anches/ my- cal c- branch in the repository by
copying/ cal ¢/ t r unk, rather than resending all of the working copy data over the network:

$ svn commit -m"Creating a private branch of /calc/trunk."
Addi ng br anches/ ny- cal c- branch
Conmitted revision 341.

And now the easier method of creating a branch, which we should have told you about in the first place:
svn copy is able to operate directly on two URLSs.

$ svn copy http://svn. exanpl e.conlrepos/cal c/trunk \
http: //svn. exanpl e. coni r epos/ cal ¢/ branches/ ny- cal c- branch \

43

Branching and Merging

-m"Creating a private branch of /calc/trunk."

Committed revision 341.

There's really no difference between these two methods. Both procedures create a new directory in revi-
sion 341, and the new directory is a copy of / cal ¢/t r unk. Notice that the second method, however,
performs an immediate commit. ° It's an easier procedure, because it doesn't require you to check out a
large mirror of the repository. In fact, this technique doesn't even require you to have a working copy at
all.

Figure 4.3. Repository With New Copy

= qal e
—
P
e
#=| trunk -
e
. —
*| branches o
- i
my-cale | e
:_branch :
I
B
—F‘ paint . —
S
P N
e
= trunk -
e
T —
* branches
Cheap Copies

Subversion's repository has a special design. When you copy a directory, you don't need to worry about
the repository growing huge—Subversion doesn't actually duplicate any data. Instead, it creates a new
directory entry that points to an existing tree. If you're a Unix user, this is the same concept as a hard-
link. From there, the copy is said to be “lazy”. That is, if you commit a change to one file within the
copied directory, then only that file changes—the rest of the files continue to exist as links to the origi-
nal filesin the original directory.

Thisis why you'll often hear Subversion users talk about “cheap copies’. It doesn't matter how large the

’Subversion does not support cross-repository copying. When using URLs with svn copy or svn move, you can only copy items
within the same repository.

44

Branching and Merging

directory is—it takes a very tiny, constant amount of time to make a copy of it. In fact, this feature is the
basis of how commits work in Subversion: each revision isa“cheap copy” of the previous revision, with
afew items lazily changed within. (To read more about this, visit Subversion's website and read about
the “bubble up” method in Subversion's design documents.)

Of course, these internal mechanics of copying and sharing data are hidden from the user, who simply
sees copies of trees. The main point here is that copies are cheap, both in time and space. Make branches
as often as you want.

Working with Your Branch

Now that you've created a branch of the project, you can check out a new working copy to start using it:

$ svn checkout http://svn.exanpl e.contfrepos/cal c/ branches/ ny-cal c-branch
A ny-cal c-branch/ Makefil e

A ny-cal c-branch/integer.c

A ny-cal c-branch/button.c

Checked out revision 341.

There's nothing special about this working copy; it simply mirrors a different directory in the repository.

When you commit changes, however, Sally won't ever see them when she updates. Her working copy is

of / cal ¢/t runk. (Be sure to read the section called “ Switching a Working Copy” later in this chap-

ter: the svn switch command is an aternate way of creating aworking copy of abranch.)

Let's pretend that aweek goes by, and the following commits happen:

* You make achangeto/ cal c/ branches/ my- cal c- branch/ butt on. ¢, which creates revi-
sion 342.

* You make a changeto/ cal ¢/ branches/ ny- cal c- branch/ i nt eger. ¢, which creates re-
vision 343.
» Sally makesachangeto/ cal ¢/t runk/ i nt eger. c, which createsrevision 344.

There are now two independent lines of development happening oni nt eger . c:

Figure 4.4. The Branching of One File'sHistory

Im,::fedl Ichc'@. |
: 5 » my-calc-branch
integerc r343
| cregled | (changed changed
: : » trunk
rad 303 ri4l ri44

time G)

45

Branching and Merging

Things get interesting when you look at the history of changes made to your copy of i nt eger . c:

$ pwd
/ hone/ user/ ny-cal c- branch

$ svn log --verbose integer.c

r343 | user | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
M / cal ¢/ branches/ ny- cal c- branch/i nteger.c

* integer.c: frozzled the wazjub.

r341 | user | 2002-11-03 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
A /cal c/ branches/ ny-cal c-branch (from/cal c/trunk: 340)

Creating a private branch of /cal c/trunk.

r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Cct 2002) | 2 lines
Changed pat hs:
M/ cal c/trunk/integer.c

* integer.c: changed a docstring.

rog8 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: adding this file to the project.

Notice that Subversion is tracing the history of your branch's i nt eger . c all the way back through
time, even traversing the point where it was copied. It shows the creation of the branch as an event in the
history, because i nt eger . ¢ was implicitly copied when all of / cal ¢/ trunk/ was copied. Now
look what happens when Sally runs the same command on her copy of thefile:

$ pwd
/hone/sal ly/ cal c

$ svn log --verbose integer.c

r344 | sally | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
M/ cal c/trunk/integer.c

* integer.c: fix a bunch of spelling errors.

r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Cct 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: changed a docstring.

Branching and Merging

rog8 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: adding this file to the project.

Sally sees her own revision 344 change, but not the change you made in revision 343. As far as Subver-
sion is concerned, these two commits affected different files in different repository locations. However,
Subversion does show that the two files share a common history. Before the branch-copy was made in
revision 341, they used to be the samefile. That's why you and Sally both see the changes made in revi-
sions 303 and 98.

The Moral of the Story

There are two important lessons that you should remember from this section.

1. Unlike many other version control systems, Subversion's branches exist as normal filesystem direc-
toriesin the repository, not in an extra dimension. These directories just happen to carry some extra
historical information.

2. Subversion has no internal concept of a branch—only copies. When you copy a directory, the re-
sulting directory is only a“branch” because you attach that meaning to it. Y ou may think of the di-
rectory differently, or treat it differently, but to Subversion it's just an ordinary directory that hap-
pens to have been created by copying.

Copying Changes Between Branches

Now you and Sally are working on parallel branches of the project: you're working on a private branch,
and Sally isworking on the trunk, or main line of development.

For projects that have a large number of contributors, it's common for most people to have working
copies of the trunk. Whenever someone needs to make along-running change that is likely to disrupt the
trunk, a standard procedure is to create a private branch and commit changes there until al the work is
complete.

So, the good news is that you and Sally aren't interfering with each other. The bad news is that it's very
easy to drift too far apart. Remember that one of the problems with the “crawl in ahole” strategy is that
by the time you're finished with your branch, it may be near-impossible to merge your changes back into
the trunk without a huge number of conflicts.

Instead, you and Sally might continue to share changes as you work. It's up to you to decide which
changes are worth sharing; Subversion gives you the ability to selectively “copy” changes between
branches. And when you're completely finished with your branch, your entire set of branch changes can
be copied back into the trunk.

Copying Specific Changes

In the previous section, we mentioned that both you and Sally made changesto i nt eger . ¢ on differ-
ent branches. If you look at Sally's log message for revision 344, you can see that she fixed some
spelling errors. No doubt, your copy of the same file still has the same spelling errors. It's likely that
your future changes to this file will be affecting the same areas that have the spelling errors, so you'rein
for some potentia conflicts when you merge your branch someday. It's better, then, to receive Sally's
change now, before you start working too heavily in the same places.

47

Branching and Merging

It's time to use the svn merge command. This command, it turns out, is a very close cousin to the svn
diff command (which you read about in Chapter 3). Both commands are able to compare any two ob-
jectsin the repository and describe the differences. For example, you can ask svn diff to show you the
exact change made by Sally in revision 344:

$ svn diff -r 343:344 http://svn. exanpl e. com repos/cal c/trunk

I ndex: integer.c

--- integer.c (revision 343)
+++ integer.c (revision 344)
@-147,7 +147,7 @@
case 6: sprint

case 7: sprint

case 8: sprint

- case 9: sprint
+ case 9: sprint
n

n

f(info->operating system "HPFS (0OS/2 or NT)"); break;
f (i nfo->operating_system "Macintosh"); break;
f (i nfo->operating_system "Z-System'); break;

f (i nfo->operating_system "CPM); break;
f(info->operating_system "CP/M); break;
tf(i
tf(i
tf(i

i
i
i
1
(
(
(
h

case 10: spri nf o- >operati ng_system "TOPS-20"); break;
case 11: spri nf o- >operati ng_system "NTFS (Wndows NT)"); break;
case 12: sprin nf o- >operati ng_system "Q@QDCS"); break;
@-164,7 +164,7 @@
| ow = (unsigned short) read byte(gzfile); /* read LSB */
hi gh = (unsigned short) read_byte(gzfile); /* read MsB */
high = high << 8; /* interpret MSB correctly */
- t ot al low + high; /* add themtogethe for correct total */

+ t ot al low + high; /* add themtogether for correct total */
i nf o->extra_header = (unsigned char *) ny_malloc(total);
fread(info->extra_header, total, 1, gzfile);

@m-241,7 +241,7 @@

Store the offset with ftell() ! */

if ((info->data offset = ftell(gzfile))==-1) {
- printf("error: ftell() retturned -1.\n");
+ printf("error: ftell() returned -1.\n");
exit(1);
}
@-249,7 +249,7 @@
printf("l believe start of conmpressed data is %\ n", info->data_offset);
#endi f

- |/* Set postion eight bytes fromthe end of the file. */
+ /* Set position eight bytes fromthe end of the file. */

if (fseek(gzfile, -8, SEEK END)) {
printf("error: fseek() returned non-zero\n");

The svn mergeis amost exactly the same. Instead of printing the differences to your terminal, however,
it applies them directly to your working copy as local modifications:

$ svn nerge -r 343:344 http://svn.exanpl e. com repos/cal c/trunk
U integer.c
$ svn status

M integer.c

The output of svn merge shows that your copy of i nt eger. ¢ was patched. It now contains Sally's
change—the change has been “copied” from the trunk to your working copy of your private branch, and

48

Branching and Merging

now exists as alocal modification. At this point, it's up to you to review the local modification and make
sure it works correctly.

In another scenario, it's possible that things may not have gone so well, and that i nt eger . ¢ may have
entered a conflicted state. Y ou might need to resolve the conflict using standard procedures (see Chapter
3), or if you decide that the merge was a bad idea altogether, simply give up and svn revert the local
change.

But assuming that you've reviewed the merged change, you can svn commit the change as usual. At that
point, the change has been merged into your repository branch. In version control terminology, this act
of copying changes between branches is commonly called porting changes.

When you commit the local modification, make sure your log message mentions that you're porting a
specific change from one branch to another. For example:

$ svn commit -m"integer.c: ported r344 (spelling fixes) fromtrunk."
Sendi ng i nteger.c

Transmtting file data .

Commi tted revision 360.

Asyou'll seein the next sections, thisis avery important “best practice” to follow.

Why Not Use Patches | nstead?

A question may be on your mind, especialy if you're a Unix user: why bother to use svn merge at all?
Why not simply use the operating system's patch command to accomplish the same job? For example:

$ svn diff -r 343:344 http://svn. exanpl e.confrepos/cal c/trunk > patchfil
$ patch -p0 < patchfile

Patching file integer.c using Plan A. ..

Hunk #1 succeeded at 147.

Hunk #2 succeeded at 164.

Hunk #3 succeeded at 241.

Hunk #4 succeeded at 249.

done

In this particular case, yes, there really is no difference. But svn merge has specia abilities that surpass
the patch program. The file format used by patch is quite limited; it's only able to tweak file contents.
There's no way to represent changes to trees, such as the addition, removal, or renaming of files and di-
rectories. If Sally's change had, say, added a new directory, the output of svn diff wouldn't have men-
tioned it at all. svn diff only outputs the limited patch-format, so there are some ideas it simply can't ex-
press. © The svn merge command, however, can express tree-changes by directly applying them to your
working copy.

A word of warning: while svn diff and svn merge are very similar in concept, they do have different
syntax in many cases. Be sure to read about them in Chapter 8 for details, or ask svn help. For example,
svn mer ge requires a working-copy path as a target, i.e. a place where it should apply the tree-changes.
If the target isn't specified, it assumes you are trying to perform one of the following common opera-
tions:

1. Youwant to merge directory changesinto your current working directory.

2. You want to merge the changes in a specific file into a file by the same name which exists in your

8in the future, the Subversion project plans to use (or invent) an expanded patch format that describes tree-changes.

49

Branching and Merging

current working directory.

If you are merging a directory and haven't specified a target path, svn merge assumes the first case
above and tries to apply the changes into your current directory. If you are merging afile, and that file
(or afile by the same name) exists in your current working directory, svn merge assumes the second
case and tries to apply the changesto alocal file with the same name.

If you want changes applied somewhere else, you'll need to say so. For example, if you're sitting in the
parent directory of your working copy, you'll have to specify the target directory to receive the changes:

$ svn nerge -r 343:344 http://svn.exanpl e.com repos/cal c/trunk my-cal c-branch
U ny-calc-branch/integer.c

Best Practices for Merging

Tracking Merges Manually

Merging changes sounds simple enough, but in practice it can become a headache. The problem isthat if
you repeatedly merge changes from one branch to another, you might accidentally merge the same
change twice. When this happens, sometimes things will work fine. When patching a file, Subversion
typicaly notices if the file already has the change, and does nothing. But if the already-existing change
has been modified in any way, you'll get a conflict.

Ideally, your version control system should prevent the double-application of changes to a branch. It
should automatically remember which changes a branch has already received, and be able to list them
for you. It should use this information to help automate merges as much as possible.

Unfortunately, Subversion is not such a system. Like CVS, Subversion 1.0 does not yet record any infor-
mation about merge operations. When you commit local modifications, the repository has no idea
whether those changes came from running svn mer ge, or from just hand-editing the files.

What does this mean to you, the user? It means that until the day Subversion grows this feature, you'll
have to track merge information yourself. The best place to do this is in the commit log-message. As
demonstrated in the earlier example, it's recommended that your log-message mention a specific revi-
sion number (or range of revisions) that are being merged into your branch. Later on, you can run svn
log to review which changes your branch already contains. This will alow you to carefully construct a
subsequent svn mer ge command that won't be redundant with previously ported changes.

In the next section, we'll show some examples of this technique in action.

Previewing Merges

Because merging only results in local modifications, it's not usually a high-risk operation. If you get the
merge wrong the first time, simply svn revert the changes and try again.

It's possible, however, that your working copy might already have local modifications. The changes ap-
plied by a merge will be mixed with your pre-existing ones, and running svn revert is no longer an op-
tion. The two sets of changes may be impossible to separate.

In cases like this, people take comfort in being able to predict or examine merges before they happen.
One simple way to do that is to run svn diff with the same arguments you plan to pass to svn merge, as
we already showed in our first example of merging. Another method of previewing is to pass the -

- dry- r un option to the merge command:

50

Branching and Merging

$ svn nmerge --dry-run -r 343:344 http://svn.exanpl e. coni repos/cal ¢/ trunk
U integer.c

$ svn status
nothing printed, working copy is still unchanged.

The - - dry-r un option doesn't actually apply any local changes to the working copy. It only shows
status codes that would be printed in areal merge. It's useful for getting a“high level” preview of the po-
tential merge, for those times when running svn diff gives too much detail.

Subversion and Changesets

Everyone seems to have a dightly different definition of “changeset”, or a least a different expectation
of what it means for a version control system to have “changeset features’. For our purpose, let's say
that a changeset is just a collection of changes with a unique name. The changes might include textual
edits to file contents, modifications to tree structure, or tweaks to metadata. In more common speak, a
changeset is just a patch with a name you can refer to.

In Subversion, a glabal revision number N names a tree in the repository: it's the way the repository
looked after the Nth commit. It's also the name of an implicit changeset: if you compare tree N with tree
N-1, you can derive the exact patch that was committed. For this reason, it's easy to think of “revision
N” as not just atree, but a changeset as well. If you use an issue tracker to manage bugs, you can use the
revision numbers to refer to particular patches that fix bugs—for example, “this issue was fixed by revi-
sion 9238.”. Somebody can then run svn log -r9238 to read about the exact changeset which fixed the
bug, and run svn diff -r9237:9238 to see the patch itself. And Subversion's merge command also uses
revision numbers. Y ou can merge specific changesets from one branch to another by naming them in the
merge arguments: svn mer ge -r 9237:9238 would merge changeset #9238 into your working copy.

Common Use-Cases for Merging

There are many different uses for svn merge, and this section describes the most common ones you're
likely to runinto.

Merging a Whole Branch to Another

To complete our running example, well move forward in time. Suppose several days have passed, and
many changes have happened on both the trunk and your private branch. Suppose that you've finished
working on your private branch; the feature or bugfix is finally complete, and now you want to merge all
of your branch changes back into the trunk for others to enjoy.

So how do we use svn merge in this scenario? Remember that this command compares two trees, and
applies the differences to a working copy. So to receive the changes, you need to have a working copy
of the trunk. We'll assume that either you still have your original one lying around (fully updated), or
that you recently checked out a fresh working copy of / cal ¢/ t r unk.

But which two trees should be compared? At first glance, the answer may seem obvious: just compare
the latest trunk tree with your latest branch tree. But beware—this assumption is wrong, and has burned
many a new user! Since svn mer ge operates like svn diff, comparing the latest trunk and branch trees
will not merely describe the set of changes you made to your branch. Such a comparison shows too
many changes: it would not only show the addition of your branch changes, but also the removal of
trunk changes that never happened on your branch.

To express only the changes that happened on your branch, you need to compare the initial state of your
branch to its final state. Using svn log on your branch, you can see that your branch was created in revi-

51

Branching and Merging

sion 341. And the final state of your branch is simply a matter of using the HEAD revision. That means
you want to compare revisions 341 and HEAD of your branch directory, and apply those differencesto a
working copy of the trunk.

Here's the final merging procedure, then:

$ cd cal c/trunk
$ svn update
At revision 405.

$ svn nerge -r 341: HEAD http://svn. exanpl e. com r epos/ cal ¢/ branches/ nmy- cal c- branch
U integer.c

button.c

Makefil e

]
]
$ svn status
M integer.c
M button.c
M Makefil e

...examne the diffs, conpile, test, etc...

$ svn commit -m "Merged ny-cal c-branch changes r341:405 into the trunk."
Sendi ng i nteger.c

Sendi ng button.c

Sendi ng Makefil e

Transmtting file data ...

Conmitted revision 406.

Again, notice that the commit log message very specifically mentions the range of changes that was
merged into the trunk. Always remember to do this, because it's critical information you'll need later on.

For example, suppose you decide to keep working on your branch for another week, in order to com-
plete an enhancement to your original feature or bugfix. The repository’'s HEAD revision is now 480, and
you're ready to do another merge from your private branch to the trunk. But as discussed in the section
called “Best Practices for Merging”, you don't want to merge the changes you've already merged before;
you only want to merge everything “new” on your branch since the last time you merged. Thetrick isto
figure out what's new.

The first step isto run svn log on the trunk, and look for a log message about the last time you merged
from the branch:

$ cd calc/trunk
$ svn log

r406 | user | 2004-02-08 11:17:26 -0600 (Sun, 08 Feb 2004) | 1 line

Mer ged ny-cal c- branch changes r341: 405 into the trunk.

Ahal Since all branch-changes that happened between revisions 341 and 405 were previously merged to
the trunk, you now know that you want to merge only the branch changes after that: revisions 406
through HEAD.

$ cd cal c/trunk
$ svn update

52

Branching and Merging

At revision 480.

$ svn nerge -r 406:480 http://svn.exanpl e.confrepos/cal c/ branches/ ny-cal c-branch
U integer.c
U button.c
U Mkefile

$ svn commit -m "Merged ny-cal c-branch changes r406:480 into the trunk."

Sendi ng i nteger.c
Sendi ng button.c
Sendi ng Makefil e

Transmtting file data ...
Conmitted revision 481.

Now the trunk contains the complete second wave of changes made to the branch. At this point, you can
either delete your branch (we'll discuss thislater on), or continue working on your branch and repeat this
procedure for subsequent merges.

Undoing Changes

Another common use for svn mergeisto roll back a change that has already been committed. Suppose
you're working away happily on a working copy of / cal ¢/ t r unk, and you discover that the change
made way back in revision 303, which changed i nt eger . c, iscompletely wrong. It never should have
been committed. Y ou can use svn merge to “undo” the change in your working copy, and then commit
the local modification to the repository. All you need to do is to specify areverse difference:

$ svn nerge -r 303:302 http://svn.exanpl e.conm repos/cal c/trunk
U integer.c

$ svn status
M integer.c

$ svn diff

#”verify that the change is renoved

$ svn comit -m "Undoing change conmitted in r303."
Sendi ng i nteger.c

Transmtting file data .

Committed revision 350.

One way to think about arepository revision is as a specific group of changes (some version control sys-
tems call these changesets). By using the - r switch, you can ask svn merge to apply a changeset, or
whole range of changesets, to your working copy. In our case of undoing a change, we're asking svn
mer ge to apply changeset #303 to our working copy backwards.

Keep in mind that rolling back a change like this is just like any other svn merge operation, so you
should use svn status and svn diff to confirm that your work isin the state you want it to be in, and then
use svh commit to send the final version to the repository. After committing, this particular changeset is
no longer reflected in the HEAD revision.

Again, you may be thinking: well, that really didn't undo the commit, did it? The change still exists in
revision 303. If somebody checks out a version of the cal ¢ project between revisions 303 and 349,
they'll still see the bad change, right?

Y es, that's true. When we talk about “removing” a change, we're really talking about removing it from
HEAD. The origina change till exists in the repository's history. For most situations, this is good

53

Branching and Merging

enough. Most people are only interested in tracking the HEAD of a project anyway. There are special
cases, however, where you really might want to destroy all evidence of the commit. (Perhaps somebody
accidentally committed a confidential document.) Thisisn't so easy, it turns out, because Subversion was
deliberately designed to never lose information. Revisions are immutabl e trees which build upon one an-
other. Removing a revision from history would cause 8 domino effect, creating chaos in all subsequent
revisions and possibly invalidating all working copies.

Resurrecting Deleted Items

The great thing about version control systems is that information is never lost. Even when you delete a
file or directory, it may be gone from the HEAD revision, but the object still exists in earlier revisions.
One of the most common questions new users ask is, “How do | get my old file or directory back?’

The first step is to define exactly which item you're trying to resurrect. Here's a useful metaphor: you
can think of every object in the repository as existing in a sort of two-dimensional coordinate system.
The first coordinate is a particular revision tree, and the second coordinate is a path within that tree. So
every version of your file or directory can be defined by a specific coordinate pair.

Subversion hasno At t i ¢ directory like CV'S does, 10 o5 you nheed to use svn log to discover the exact
coordinate pair you wish to resurrect. A good strategy is to run svn log --verbose in a directory which
used to contain your deleted item. The - - ver bose option shows alist of all changed items in each re-
vision; al you need to do is find the revision in which you deleted the file or directory. You can do this
visualy, or by using another tool to examine the log output (via grep, or perhaps via an incremental
search in an editor.)

$ cd parent-dir
$ svn log --verbose

r808 | joe | 2003-12-26 14:29:40 -0600 (Fri, 26 Dec 2003) | 3 lines
Changed pat hs:

D /calc/trunk/real.c

M /cal c/trunk/integer.c

Added fast fourier transformfunctions to integer.c.
Rermoved real .c because code now i n doubl e. c.

In the example, we're assuming that you're looking for a deleted file r eal . c. By looking through the
logs of a parent directory, you've spotted that this file was deleted in revision 808. Therefore, the last
version of the file to exist was in the revision right before that. Conclusion: you want to resurrect the
path/ cal ¢/t runk/ r eal . ¢c fromrevision 807.

That was the hard part—the research. Now that you know what you want to restore, you have two differ-
ent choices.

One option is to use svn merge to apply revision 808 “in reverse’. (We've aready discussed how to
undo changes, see the section called “Undoing Changes’.) This would have the affect of re-adding
real . ¢ asaloca modification. The file would be scheduled for addition, and after a commit, the file
would again exist in HEAD.

In this particular example, however, thisis probably not the best strategy. Reverse-applying revision 808
would not only schedule r eal . ¢ for addition, but the log message indicates that it would also undo
certain changesto i nt eger . ¢, which you don't want. Certainly, you could reverse-merge revision 808
and then svn revert the local modificationsto i nt eger . c, but this technique doesn't scale well. What

9The Subversion project has plans, however, to someday implement an svnadmin obliter ate command that would accomplish the
task of permanently deleting information. In the meantime, see the section called “svndumpfilter” for a possible workaround.

Because CV'S doesn't version trees, it creates an At t i ¢ area within each repository directory as away of remembering deleted
files.

54

Branching and Merging

if there were 90 files changed in revision 8087

A second, more targeted strategy is not to use svn merge at al, but rather the svn copy command. Sim-
ply copy the exact revision and path “coordinate pair” from the repository to your working copy:

$ svn copy --revision 807 \
http://svn. exanpl e.conirepos/calc/trunk/real.c ./real.c

$ svn status
A + real.c

$ svn commit -m"Resurrected real.c fromrevision 807, /calc/trunk/real.

Addi ng real.c
Transmitting file data .
Conmitted revision 1390.

The plus sign in the status output indicates that the item isn't merely scheduled for addition, but sched-
uled for addition “with history.” Subversion remembers where it was copied from. In the future, running
svn log on this file will traverse back through the file's resurrection and through &l the history it had
prior to revision 807. In other words, this new r eal . ¢ isn't really new; it's a direct descendant of the
original, deleted file.

Although our example shows us resurrecting afile, note that these same techniques work just as well for
resurrecting deleted directories.

Switching a Working Copy

The svn switch command transforms an existing working copy into a different branch. While this com-
mand isn't strictly necessary for working with branches, it provides a nice shortcut to users. In our earlier
example, after creating your private branch, you checked out a fresh working copy of the new repository
directory. Instead, you can simply ask Subversion to change your working copy of / cal ¢/ trunk to
mirror the new branch location:

$ cd calc

$ svn info | grep URL
URL: http://svn.exanpl e.conirepos/cal c/trunk

$ svn switch http://svn. exanpl e. com repos/ cal c/ branches/ nmy-cal c- branch

U integer.c
] button.c
] Makefil e

Updated to revision 341.

$ svn info | grep URL
URL: http://svn.exanpl e.conirepos/cal c/ branches/ my-cal c-branch

After “switching” to the branch, your working copy is no different than what you would get from doing
a fresh checkout of the directory. And it's usually more efficient to use this command, because often
branches only differ by a small degree. The server sends only the minimal set of changes necessary to
make your working copy reflect the branch directory.

The svn switch command also takes a - - r evi si on (- r) option, so you need not always move your
working copy to the “tip” of the branch.

Of course, most projects are more complicated than our cal ¢ example, containing multiple subdirecto-
ries. Subversion users often follow a specific agorithm when using branches:

55

Branching and Merging

1. Copy the project's entire 'trunk' to a new branch directory.

2. Switch only part of the trunk working copy to mirror the branch.

In other words, if a user knows that the branch-work only needs to happen on a specific subdirectory,
they use svn switch to move only that subdirectory to the branch. (Or sometimes users will switch just a
single working file to the branch!) That way, they can continue to receive normal 'trunk’ updates to most
of their working copy, but the switched portions will remain immune (unless someone commits a change
to their branch). This feature adds a whole new dimension to the concept of a “mixed working
copy”—not only can working copies contain a mixture of working revisions, but a mixture of repository
locations as well.

If your working copy contains a number of switched subtrees from different repository locations, it con-
tinues to function as normal. When you update, you'll receive patches to each subtree as appropriate.
When you commit, your local changes will still be applied as a single, atomic change to the repository.

Note that while it's okay for your working copy to reflect a mixture of repository locations, these loca
tions must all be within the same repository. Subversion repcﬁi tories aren't yet able to communicate with
one another; that's a feature planned beyond Subversion 1.0.

Switches and Updates

Have you noticed that the output of svn switch and svn update look the same? The switch command is
actually a superset of the update command.

When you run svn update, you're asking the repository to compare two trees. The repository does so,
and then sends a description of the differences back to the client. The only difference between svn
switch and svn update is that the update command always compares two identical paths.

That is, if your working copy is a mirror of / cal ¢/ t r unk, then svn update will automatically com-
pare your working copy of / cal ¢/t runk to/ cal ¢/t runk in the HEAD revision. If you're switch-
ing your working copy to a branch, then svn switch will compare your working copy of /
cal ¢/ t r unk to some other branch-directory in the HEAD revision.

In other words, an update moves your working copy through time. A switch moves your working copy
through time and space.

Because svn switch is essentially a variant of svn update, it shares the same behaviors; any local modi-
fications in your working copy are preserved when new data arrives from the repository. This allows
you to perform all sorts of clever tricks.

For example, suppose you have aworking copy of / cal ¢/ t r unk and make a number of changesto it.
Then you suddenly realize that you meant to make the changes to a branch instead. No problem! When
you svn switch your working copy to the branch, the local changes will remain. Y ou can then test and
commit them to the branch.

Tags

Another common version control concept isatag. A tag isjust a*“snapshot” of aproject in time. In Sub-
version, this idea already seems to be everywhere. Each repository revision is exactly that—a snapshot

Lyoy can, however, use svn switch with the - - r el ocat e switch if the URL of your server changes and you don't want to
abandon an existing working copy. See the svn switch section in Chapter 9, Subversion Complete Reference for more information
and an example.

56

Branching and Merging

of the filesystem after each commit.

However, people often want to give more human-friendly names to tags, liker el ease- 1. 0. And they
want to make snapshots of smaller subdirectories of the filesystem. After al, it's not so easy to remem-
ber that release-1.0 of a piece of softwareis a particular subdirectory of revision 43822.

Creating a Simple Tag

Once again, svn copy comes to the rescue. If you want to create a snapshot of / cal ¢/t r unk exactly
asit looks in the HEAD revision, then make a copy of it:

$ svn copy http://svn.exanpl e.com repos/cal c/trunk \
http://svn. exanpl e. conlrepos/cal c/tags/rel ease-1.0 \
-m"Tagging the 1.0 rel ease of the 'calc' project."

Committed revision 351.

This example assumesthat a/ cal ¢/t ags directory already exists. After the copy completes, the new
rel ease- 1. O directory is forever a snapshot of how the project looked in the HEAD revision at the
time you made the copy. Of course you might want to be more precise about exactly which revision you
copy, in case somebody else may have committed changes to the project when you weren't looking. So
if you know that revision 350 of / cal ¢/t r unk is exactly the snapshot you want, you can specify it by
passing - r 350 to the svn copy command.

But wait a moment: isn't this tag-creation procedure the same procedure we used to create a branch?
Yes, infact, itis. In Subversion, there's no difference between atag and a branch. Both are just ordinary
directories that are created by copying. Just as with branches, the only reason a copied directory is a
“tag” is because humans have decided to treat it that way: aslong as nobody ever commits to the direc-
tory, it forever remains a snapshot. If people start committing to it, it becomes a branch.

If you are administering a repository, there are two approaches you can take to managing tags. The first
approach is “hands off”: as a matter of project policy, decide where your tags will live, and make sure
all users know how to treat the directories they copy in there. (That is, make sure they know not to com-
mit to them.) The second approach is more paranoid: you can use one of the access-control scripts pro-
vided with Subversion to prevent anyone from doing anything but creating new copies in the tags-area
(See Chapter 6, Server Configuration.) The paranoid approach, however, isn't usualy necessary. If a
user accidentally commits a change to a tag-directory, you can simply undo the change as discussed in
the previous section. Thisis version control, after all.

Creating a Complex Tag

Sometimes you may want your “snapshot” to be more complicated than a single directory at asingle re-
vision.

For example, pretend your project is much larger than our cal ¢ example: suppose it contains a number
of subdirectories and many more files. In the course of your work, you may decide that you need to cre-
ate aworking copy that is designed to have specific features and bugfixes. Y ou can accomplish this by
selectively backdating files or directories to particular revisions (using svn update -r liberally), or by
switching files and directories to particular branches (making use of svn switch). When you're done,
your working copy is a hodgepodge of repository locations from different revisions. But after testing,
you know it's the precise combination of data you need.

Time to make a snapshot. Copying one URL to another won't work here. In this case, you want to make
a snapshot of your exact working copy arrangement and store it in the repository. Luckily, svn copy ac-
tually has four different uses (which you can read about in Chapter 9), including the ability to copy a
working-copy tree to the repository:

57

Branching and Merging

$1s
A o nmy- wor ki ng- copy/

$ svn copy my-working-copy http://svn. exanpl e.com repos/ cal c/tags/ nytag

Committed revision 352.

Now there is a new directory in the repository, / cal ¢/t ags/ myt ag, which is an exact snapshot of
your working copy—mixed revisions, urls, and all.

Other users have found interesting uses for this feature. Sometimes there are situations where you have a
bunch of local changes made to your working copy, and you'd like a collaborator to see them. Instead of
running svn diff and sending a patchfile (which won't capture tree changes), you can instead use svn
copy to “upload” your working copy to a private area of the repository. Your collaborator can then ei-
ther checkout a verbatim copy of your working copy, or use svn mer ge to receive your exact changes.

Branch Maintenance

You may have noticed by now that Subversion is extremely flexible. Because it implements branches
and tags with the same underlying mechanism (directory copies), and because branches and tags appear
in normal filesystem space, many people find Subversion intimidating. It's almost too flexible. In this
section, we'll offer some suggestions for arranging and managing your data over time.

Repository Layout

There are some standard, recommended ways to organize a repository. Most people create at r unk di-
rectory to hold the “main line” of development, abr anches directory to contain branch copies, and a
t ags directory to contain tag copies. If a repository holds only one project, then often people create
these top-level directories:

/ trunk
/ br anches
/tags

If arepository contains multiple projects, admins typically index their layout by project (see the section
called “Choosing a Repository Layout” to read more about “ project roots’):

/ pai nt/trunk

/ pai nt/ branches
/ pai nt/tags
/cal c/trunk

/ cal c/ branches
/cal c/tags

Of course, you're free to ignore these common layouts. You can create any sort of variation, whatever
works best for you or your team. Remember that whatever you choose, it's not a permanent commit-
ment. Y ou can reorganize your repository at any time. Because branches and tags are ordinary directo-
ries, the svn move command can move or rename them however you wish. Switching from one layout
to another isjust a matter of issuing a series of server-side moves; if you don't like the way things are or-
ganized in the repository, just juggle the directories around.

Remember, though, that while moving directories may be easy to do, you need to be considerate of your
users as well. Your juggling can be disorienting to users with existing working copies. If a user has a

58

Branching and Merging

working copy of a particular repository directory, your svn move operation might remove the path from
the latest revision. When the user next runs svn update, they'll be told that their working copy repre-
sents a path that no longer exists, and the user will be forced to svn switch to the new location.

Data Lifetimes

Another nice feature of Subversion's model is that branches and tags can have finite lifetimes, just like
any other versioned item. For example, suppose you eventually finish all your work on your personal
branch of the cal c project. After merging all of your changes back into / cal ¢/t r unk, there's no
need for your private branch directory to stick around anymore:

$ svn delete http://svn. exanpl e. coni repos/ cal c/ branches/ my-cal c-branch \
-m "Renmovi ng obsol ete branch of calc project.”

Committed revision 375.

And now your branch is gone. Of course it's not really gone: the directory is simply missing from the
HEAD revision, no longer distracting anyone. If you use svn checkout, svn switch, or svn list to exam-
ine an earlier revision, you'll still be able to see your old branch.

If browsing your deleted directory isn't enough, you can always bring it back. Resurrecting data is very
easy in Subversion. If there's a deleted directory (or file) that you'd like to bring back into HEAD, simply
use svn copy -r to copy it from the old revision:

$ svn copy -r 374 http://svn.exanpl e. coni repos/ cal ¢/ branches/ ny-cal c-branch \
http://svn. exanpl e. coni repos/ cal c/ branches/ my- cal c- branch

Committed revision 376.

In our example, your personal branch had arelatively short lifetime: you may have created it to fix abug
or implement a new feature. When your task is done, so is the branch. In software development, though,
it's a'so common to have two “main” branches running side-by-side for very long periods. For example,
suppose it's time to release a stable cal ¢ project to the public, and you know it's going to take a couple
of months to shake bugs out of the software. You don't want people to add new features to the project,
but you don't want to tell al developers to stop programming either. So instead, you create a “stable”
branch of the software that won't change much:

$ svn copy http://svn.exanpl e.com repos/cal c/trunk \
http://svn. exanpl e. coni repos/ cal c/ branches/stable-1.0 \
-m"Creating stable branch of calc project.”

Committed revision 377.

And now developers are free to continue adding cutting-edge (or experimental) features to /
cal ¢/ trunk, and you can declare a project policy that only bugfixes are to be committed to /
cal ¢/ branches/ st abl e- 1. 0. That is, as people continue to work on the trunk, a human selec-
tively ports bugfixes over to the stable branch. Even after the stable branch has shipped, you'll probably
continue to maintain the branch for along time—that is, as long as you continue to support that release
for customers.

Summary

We've covered a lot of ground in this chapter. We've discussed the concepts of tags and branches, and

59

Branching and Merging

demonstrated how Subversion implements these concepts by copying directories with the svn copy
command. We've shown how to use svn mer ge to copy changes from one branch to another, or roll back
bad changes. We've gone over the use of svn switch to create mixed-location working copies. And
we've talked about how one might manage the organization and lifetimes of branchesin arepository.

Remember the Subversion mantra: branches and tags are cheap. So use them liberally!

60

Chapter 5. Repository Administration

The Subversion repository is the central storehouse of versioned data for any number of projects. As
such, it becomes an obvious candidate for all the love and attention an administrator can offer. While the
repository is generally a low-maintenance item, it is important to understand how to properly configure
and carefor it so that potential problems are avoided, and actual problems are safely resolved.

In this chapter, we'll discuss how to create and configure a Subversion repository, and how to expose
that repository for network accessibility. We'll also talk about repository maintenance, including the use
of the svnlook and svnadmin tools (which are provided with Subversion). We'll address some common
guestions and mistakes, and give some suggestions on how to arrange the datain the repository.

If you plan to access a Subversion repository only in the role of a user whose data is under version con-
trol (that is, via a Subversion client), you can ski pﬁhis chapter altogether. However, if you are, or wish
to become, a Subversion repository administrator, = you should definitely pay attention to this chapter.

Repository Basics

Understanding Transactions and Revisions

Conceptually speaking, a Subversion repository is a sequence of directory trees. Each tree is a snapshot
of how the files and directories versioned in your repository looked at some point in time. These snap-
shots are created as aresult of client operations, and are called revisions.

Every revision beginslife as atransaction tree. When doing a commit, a client builds a Subversion trans-
action that mirrors their local changes (plus any additional changes that might have been made to the
repository since the beginning of the client's commit process), and then instructs the repository to store
that tree as the next snapshot in the sequence. If the commit succeeds, the transaction is effectively pro-
moted into a new revision treg, and is assigned a new revision number. If the commit fails for some rea-
son, the transaction is destroyed and the client isinformed of the failure.

Updates work in asimilar way. The client builds atemporary transaction tree that mirrors the state of the
working copy. The repository then compares that transaction tree with the revision tree at the requested
revision (usually the most recent, or “youngest” tree), and sends back information that informs the client
about what changes are needed to transform their working copy into a replica of that revision tree. After
the update compl etes, the temporary transaction is del eted.

The use of transaction trees is the only way to make permanent changes to a repository's versioned
filesystem. However, it's important to understand that the lifetime of atransaction is completely flexible.
In the case of updates, transactions are temporary trees that are immediately destroyed. In the case of
commits, transactions are transformed into permanent revisions (or removed if the commit fails). In the
case of an error or bug, it's possible that a transaction can be accidentally |eft lying around in the reposi-
tory (not really affecting anything, but still taking up space).

In theory, someday whole workflow applications might revolve around more fine-grained control of
transaction lifetime. It is feasible to imagine a system whereby each transaction slated to become a revi-
sion is left in stasis well after the client finishes describing its changes to repository. This would enable
each new commit to be reviewed by someone else, perhaps a manager or engineering QA team, who can
choose to promote the transaction into a revision, or abort it.

Unversioned Properties

Lrhis may sound really prestigious and lofty, but we're just talking about anyone who is interested in that mysterious realm be-
yond the working copy where everyone's data hangs out.

61

Repository Administration

Transactions and revisions in the Subversion repository can have properties attached to them. These
properties are generic key-to-value mappings, and are generally used to store information about the tree
to which they are attached. The names and values of these properties are stored in the repository's
filesystem, along with the rest of your tree data.

Revision and transaction properties are useful for associating information with a tree that is not strictly
related to the files and directories in that tree—the kind of information that isn't managed by client
working copies. For example, when a new commit transaction is created in the repository, Subversion
adds a property to that transaction named svn: dat e—a datestamp representing the time that the trans-
action was created. By the time the commit process is finished, and the transaction is promoted to a per-
manent revision, the tree has also been given a property to store the username of the revision's author
(svn: aut hor) and a property to store the log message attached to that revision (svn: | og).

Revision and transaction properties are unversioned properties—as they are modified, their previous
values are permanently discarded. Also, while revision trees themselves are immutable, the properties
attached to those trees are not. You can add, remove, and modify revision properties at any time in the
future. If you commit anew revision and later realize that you had some misinformation or spelling error
in your log message, you can simply replace the value of the svn: | og property with a new, corrected

log message.
Berkeley DB

The data housed within Subversion repositories actualy lives inside a database, specifically, a Berkeley
DB Data Store. When the initial design phase of Subversion was in progress, the developers decided to
use Berkeley DB for a variety of reasons, including its open-source license, transaction support, reliabil-
ity, performance, APl simplicity, thread-safety, support for cursors, and so on.

Berkeley DB provides real transaction support—perhaps its most powerful feature. Multiple processes
accessing your Subversion repositories don't have to worry about accidentally clobbering each other's
data. The isolation provided by the transaction system is such that for any given operation, the Subver-
sion repository code sees a static view of the database—not a database that is constantly changing at the
hand of some other process—and can make decisions based on that view. If the decision made happens
to conflict with what another process is doing, the entire operation is rolled back asif it never happened,
and Subversion gracefully retries the operation against a new, updated (and yet still static) view of the
database.

Another great feature of Berkeley DB is hot backups—the ability to backup the database environment
without taking it “offline’. We'll discuss how to backup your repository in the section called Reposi-
“tory Backup”, but the benefits of being able to make fully functional copies of your repositories with-
out any downtime should be obvious.

Berkeley DB is aso a very reliable database system. Subversion uses Berkeley DB's logging facilities,
which means that the database first writes to on-disk logfiles a description of any modifications it is
about to make, and then makes the modification itself. Thisis to ensure that if anything goes wrong, the
database system can back up to a previous checkpoint—a location in the logfiles known not to be cor-
rupt—and replay transactions until the data is restored to a usable state. See the section called Manag-
“ing Disk Space” for more about Berkeley DB logfiles.

But every rose has its thorn, and so we must note some known limitations of Berkeley DB. First, Berke-
ley DB environments are not portable. Y ou cannot simply copy a Subversion repository that was created
on a Unix system onto a Windows system and expect it to work. While much of the Berkeley DB
database format is architecture independent, there are other aspects of the environment that are not. Sec-
ondly, Subversion uses Berkeley DB in away that will not operate on Windows 95/98 systems—if you
need to house a repository on a Windows machine, stick with Windows 2000 or Windows XP. Finally,
you should never keep a Subversion repository on a network share. While Berkeley DB promises to be-
have correctly on network shares that meet a particular set of specifications, amost no known shares ac-
tually meet all those specifications.

62

Repository Administration

Repository Creation and Configuration

Creating a Subversion repository is an incredibly simple task. The svnadmin utility, provided with Sub-
version, has a subcommand for doing just that. To create a new repository, just run:

$ svnadm n create path/to/repos

This creates a new repository in the directory pat h/ t o/ r epos. This new repository begins life at re-
vision 0, which is defined to consist of nothing but the top-level root (/) filesystem directory. Initialy,
revision 0 also has a single revision property, svn: dat e, set to the time at which the repository was
created.

Warning

Do not create your repository on a network share—it cannot exist on a remote filesystem such
as NFS, AFS, or Windows SMB. Berkeley DB requires that the underlying filesystem imple-
ment strict POSIX locking semantics, and more importantly, the ability to map files directly
into process memory. Almost no network filesystems provide these features. If you attempt to
use Berkeley DB on a network share, the results are unpredictable—you may see mysterious
errors right away, or it may be months before you discover that your repository database is sub-
tly corrupted.

If you need multiple computers to access the repository, you should set up a server process
(such as Apache or svnserve), store the repository on a local filesystem which the server can
access, and make the repository available over a network. Chapter 6, Server Configuration cov-
ersthis processin detail.

You may have noticed that the path argument to svnadmin was just a regular filesystem path and not a
URL like the svn client program uses when referring to repositories. Both svnadmin and svnlook are
considered server-side utilities—they are used on the machine where the repository resides to examine
or modify aspects of the repository, and are in fact unable to perform tasks across a network. A common
mistake made by Subversion newcomersistrying to pass URLs (even “local” fi | e: ones) to these two
programs.

So, after you've run the svnadmin create command, you have a shiny new Subversion repository in its
own directory. Let'stake a peek at what is actually created inside that subdirectory.

$ |Is repos
conf/ dav/ db/ format hooks/ |ocks/ README. t xt

With the exception of the README. t xt and f or mat files, the repository directory is a collection of
subdirectories. As in other areas of the Subversion design, modularity is given high regard, and hierar-
chical organization is preferred to cluttered chaos. Here is a brief description of all of the items you see
in your new repository directory:

conf
A directory containing repository configuration files.

dav
A directory provided to Apache and mod_dav_svn for their private housekeeping data.

db
The main Berkeley DB environment, full of DB tables that comprise the data store for Subversion's
filesystem (where all of your versioned data resides).

63

Repository Administration

format
A file whose contents are a single integer value that dictates the version number of the repository
layout.

hooks
A directory full of hook script templates (and hook scripts themselves, once you've installed some).

locks
A directory for Subversion's repository locking data, used for tracking accessors to the repository.

README.txt
A filewhich merely informsits readers that they are looking at a Subversion repository.

In general, you shouldn't tamper with your repository “by hand”. The svnadmin tool should be suffi-
cient for any changes necessary to your repository, or you can look to third-party tools (such as Berkeley
DB's tool suite) for tweaking relevant subsections of the repository. Some exceptions exist, though, and
we'll cover those here.

Hook Scripts

A hook is a program triggered by some repository event, such as the creation of a new revision or the
modification of an unversioned property. Each hook is handed enough information to tell what that
event is, what target(s) it's operating on, and the username of the person who triggered the event. De-
pending on the hook's output or return status, the hook program may continue the action, stop it, or sus-
pend it in some way.

Thehooks subdirectory is, by default, filled with templates for various repository hooks.

$ |'s repos/ hooks/

post -comi t .t npl pre-revprop-change. t nmpl
post -revprop-change.tnpl start-conmt.tnpl
pre-commt.tnpl

There is one template for each hook that the Subversion repository implements, and by examining the
contents of those template scripts, you can see what triggers each such script to run and what data is
passed to that script. Also present in many of these templates are examples of how one might use that
script, in conjunction with other Subversion-supplied programs, to perform common useful tasks. To ac-
tually install a working hook, you need only place some executable program or script into the r epos/

hooks directory which can be executed as the name (like start-commit or post-commit) of the hook.

On Unix platforms, this means supplying a script or program (which could be a shell script, a Python
program, a compiled C binary, or any number of other things) named exactly like the name of the hook.
Of course, the template files are present for more than just informational purposes—the easiest way to
install a hook on Unix platforms is to simply copy the appropriate template file to a new file that lacks
the . t mpl extension, customize the hook's contents, and ensure that the script is executable. Windows,
however, uses file extensions to determine whether or not a program is executable, so you would need to
supply a program whose basename is the name of the hook, and whose extension is one of the special
extensions recognized by Windows for executable programs, such as. exe or . comfor programs, and
. bat for batch files.

Currently there are five hooks implemented by the Subversion repository:
start-comm t

This is run before the commit transaction is even created. It is typically used to decide if the user
has commit privileges at all. The repository passes two arguments to this program: the path to the

64

Repository Administration

repository, and username which is attempting the commit. If the program returns a non-zero exit
value, the commit is stopped before the transaction is even created.

pre-conmm t
Thisis run when the transaction is complete, but before it is committed. Typically, this hook is used
to protect against commits that are disallowed due to content or location (for example, your site
might require that all commits to a certain branch include a ticket number from the bug tracker, or
that the incoming log message is non-empty). The repository passes two arguments to this program:
the path to the repository, and the name of the transaction being committed. If the program returns a
non-zero exit value, the commit is aborted and the transaction is removed.

The Subversion distribution includes some access control scripts (located in the tool s/
hook- scri pt s directory of the Subversion source tree) that can be called from pre-commit to
implement fine-grained access control. At thistime, thisis the only method by which administrators
can implement finer-grained access control beyond what Apache'sht t pd. conf offers. In afuture
version of Subversion, we plan to implement access control lists (ACLS) directly in the filesystem.

post - conmmi t
This is run after the transaction is committed, and a new revision is created. Most people use this
hook to send out descriptive emails about the commit or to make a backup of the repository. The
repository passes two arguments to this program: the path to the repository, and the new revision
number that was created. The exit code of the program isignored.

The Subversion distribution includes a commit-email.pl script (located in the tool s/
hook- scri pt s/ directory of the Subversion source tree) that can be used to send email with
(and/or append to a log file) a description of a given commit. This mail contains a list of the paths
that were changed, the log message attached to the commit, the author and date of the commit, as
well as a GNU diff-style display of the changes made to the various versioned files as part of the
commit.

Another useful tool provided by Subversion is the hot-backup.py script (located in the t ool s/

backup/ directory of the Subversion source tree). This script performs hot backups of your Sub-
version repository (a feature supported by the Berkeley DB database back-end), and can be used to
make a per-commit snapshot of your repository for archival or emergency recovery purposes.

pre-revprop- change

Because Subversion's revision properties are not versioned, making modifications to such a prop-
erty (for example, the svn: | og commit message property) will overwrite the previous value of
that property forever. Since data can be potentially lost here, Subversion supplies this hook (and its
counterpart, post - revpr op- change) so that repository administrators can keep records of
changes to these items using some external means if they so desire. As a precaution against losing
unversioned property data, Subversion clients will not be allowed to remotely modify revision prop-
erties at all unless this hook isimplemented for your repository.

This hook runs just before such a modification is made to the repository. The repository passes four
arguments to this hook: the path to the repository, the revision on which the to-be-modified property
exists, the authenticated username of the person making the change, and the name of the property it-
self.

post - r evpr op- change

As mentioned earlier, this hook is the counterpart of the pr e- r evpr op- change hook. In fact,
for the sake of paranoia this script will not run unless the pr e- r evpr op- change hook exists.
When both of these hooks are present, the post - r evpr op- change hook runs just after a revi-
sion property has been changed, and is typically used to send an email containing the new value of
the changed property. The repository passes four arguments to this hook: the path to the repository,
the revision on which the property exists, the authenticated username of the person making the
change, and the name of the property itself.

The Subversion distribution includes a propchange-email.pl script (located in the t ool s/

65

Repository Administration

hook- scri pts/ directory of the Subversion source tree) that can be used to send email with
(and/or append to a log file) the details of a revision property change. This mail contains the revi-
sion and name of the changed property, the user who made the change, and the new property value.

Subversion will attempt to execute hooks as the same user who owns the process which is accessing the
Subversion repository. In most cases, the repository is being accessed via Apache HTTP server and
mod_dav_svn, so this user is the same user that Apache runs as. The hooks themselves will need to be
configured with OS-level permissions that allow that user to execute them. Also, this means that any file
or programs (including the Subversion repository itself) accessed directly or indirectly by the hook will
be accessed as the same user. In other words, be aert to potential permission-related problems that could
prevent the hook from performing the tasks you've written it to perform.

Berkeley DB Configuration

A Berkeley DB environment is an encapsulation of one or more databases, log files, region files and
configuration files. The Berkeley DB environment has it own set of default configuration values for
things like the number of locks allowed to be taken out at any given time, or the maximum size of the
journaling log files, etc. Subversion's filesystem code additionally chooses default values for some of the
Berkeley DB configuration options. However, sometimes your particular repository, with its unique col-
lection of data and access patterns, might require a different set of configuration option values.

The folks at Sleepycat (the producers of Berkeley DB) understand that different databases have different
requirements, and so they have provided a mechanism for overriding at runtime many of the configura-
tion values for the Berkeley DB environment. Berkeley checks for the presence of a file named
DB_CONFI Gin each environment directory, and parses the options found in that file for use with that
particular Berkeley environment.

The Berkeley configuration file for your repository is located in the db environment directory, a r e-

pos/ db/ DB_CONFI G. Subversion itself creates this file when it creates the rest of the repository. The
fileinitially contains some default options, as well as pointers to the Berkeley DB online documentation
so you can read about what those options do. Of course, you are free to add any of the supported Berke-
ley DB options to your DB_CONFI Gfile. Just be aware that while Subversion never attempts to read or
interpret the contents of the file, and makes no use of the option settings in it, you'll want to avoid any
configuration changes that may cause Berkeley DB to behave in a fashion that is unexpected by the rest
of the Subversion code. Also, changes made to DB_CONFI G won't take effect until you recover the
database environment (using svnadmin recover).

Repository Maintenance

An Administrator's Toolkit

svnlook

svnlook is a tool provided by Subversion for examining the various revisions and transactions in a
repository. No part of this program attempts to change the repository—it's a “read-only” tool. svnlook is
typically used by the repository hooks for reporting the changes that are about to be committed (in the
case of the pre-commit hook) or that were just committed (in the case of the post-commit hook) to the
repository. A repository administrator may use this tool for diagnostic purposes.

svnlook has a straightforward syntax:

$ svnl ook hel p

general usage: svnl ook SUBCOMVAND REPOS_PATH [ARGS & OPTIONS .. .]

Not e: any subconmand which takes the '--revision' and '--transaction'
options will, if invoked w thout one of those options, act on

66

Repository Administration

the repository's youngest revision.
Type "svnl ook hel p <subcommand>" for help on a specific subconmand.

Nearly every one of svnlook's subcommands can operate on either arevision or a transaction tree, print-
ing information about the tree itself, or how it differs from the previous revision of the repository. Y ou
usethe--revisionand--transacti on options to specify which revision or transaction, respec-
tively, to examine. Note that while revision numbers appear as natural numbers, transaction names are
alphanumeric strings. Keep in mind that the filesystem only allows browsing of uncommitted transac-
tions (transactions that have not resulted in a new revision). Most repositories will have no such transac-
tions, because transactions are usually either committed (which disqualifies them from viewing) or
aborted and removed.

In the absence of both the - -revi si on and - -transacti on options, svnlook will examine the
youngest (or “HEAD”) revision in the repository. So the following two commands do exactly the same
thing when 19 is the youngest revision in the repository located at / pat h/ t o/ r epos:

$ svnl ook info /path/tol/repos
$ svnlook info /path/to/repos --revision 19

The only exception to these rules about subcommands is the svnlook youngest subcommand, which
takes no options, and simply prints out the HEAD revision number.

$ svnl ook youngest /path/to/repos
19

Output from svnlook is designed to be both human- and machine-parsable. Take as an example the out-
put of thei nf o subcommand:

$ svnl ook info path/to/repos

sally

2002-11-04 09:29:13 -0600 (Mon, 04 Nov 2002)
27

Added t he usual

Greek tree.

The output of thei nf o subcommand is defined as:

1. Theauthor, followed by anewline.
The date, followed by a newline.

The number of charactersin the log message, followed by a newline.

A WD

The log message itself, followed by a newline.

This output is human-readable, meaning items like the datestamp are displayed using a textual represen-
tation instead of something more obscure (such as the number of nanoseconds since the Tasty Freeze
guy drove by). But this output is also machine-parsable—because the log message can contain multiple
lines and be unbounded in length, svnlook provides the length of that message before the message itself.
This alows scripts and other wrappers around this command to make intelligent decisions about the log
message, such as how much memory to allocate for the message, or at least how many bytes to skip in
the event that this output is not the last bit of datain the stream.

67

Repository Administration

Another common use of svnlook is to actually view the contents of a revision or transaction tree. The
svnlook tree command displays the directories and files in the requested tree. If you supply the -
- show-i ds option, it will also show the filesystem node revision IDs for each of those paths (which is
generally of more use to developers than to users).

$ svnl ook tree path/to/repos --showids
/ <0.0.1>
A <2.0.1>
B/ <4.0.1>
| anbda <5.0. 1>
E/ <6.0.1>
al pha <7.0. 1>
beta <8.0. 1>
F/ <9.0.1>
mu <3.0. 1>
C <a.0.1>
D <b.0.1>
ganma <c. 0. 1>
G <d.0.1>
pi <e.0.1>
rho <f.0.1>
tau <g.0. 1>
H <h.0.1>
chi <i.0.1>
onega <k.O0.1>
psi <j.0.1>
iota <1.0.1>

Once you've seen the layout of directories and files in your tree, you can use commands like svnlook
cat, svnlook propget, and svnlook proplist to dig into the details of those files and directories.

svnlook can perform a variety of other queries, displaying subsets of bits of information we've men-
tioned previously, reporting which paths were modified in a given revision or transaction, showing tex-
tual and property differences made to files and directories, and so on. The following is a brief descrip-
tion of the current list of subcommands accepted by svnlook, and the output of those subcommands:

aut hor
Print the tree's author.

cat
Print the contents of afilein the tree.

changed
List all files and directories that changed in the tree.

dat e
Print the tree's datestamp.

diff
Print unified diffs of changed files.

di r s- changed
List the directories in the tree that were themselves changed, or whose file children were changed.

hi story
Display interesting points in the history of a versioned path (places where modifications or copies
occurred).

68

Repository Administration

info
Print the tree's author, datestamp, 1og message character count, and og message.

| og
Print the tree's log message.

pr opget
Print the value of a property on a path in the tree.

propli st
Print the names and values of properties set on pathsin the tree.

tree
Print the tree listing, optionally revealing the filesystem node revision I1Ds associated with each
path.

uui d
Print the tree's unique user ID (UUID).

youngest
Print the youngest revision number.

svnadmin

The svnadmin program is the repository administrator's best friend. Besides providing the ability to cre-
ate Subversion repositories, this program allows you to perform several maintenance operations on those
repositories. The syntax of svnadmin issimilar to that of svnlook:

$ svnadmin hel p
general usage: svnadm n SUBCOVMWWAND REPOS PATH [ARGS & OPTIONS ...]
Type "svnadm n hel p <subcomuand>" for help on a specific subcomrand.

Avai | abl e subconmands:
create
deltify
dunp

help (?, h)

WEe've already mentioned svnadmin's cr eat e subcommand (see the section called “Repository Cre-
ation and Configuration”). Most of the others we will cover in more detail later in this chapter. For now,
let's just take a quick glance at what each of the available subcommands offers.

create
Creates a new Subversion repository.

deltify
Run over a specified revision range, performing predecessor ddltification on the paths changed in
those revisions. If no revisions are specified, this command will simply deltify the HEAD revision.

dunp
Dumps the contents of the repository, bounded by a given set of revisions, using a portable dump
format.

hot copy
Makes a hot copy of a repository. You can run this command at any time and make a safe copy of

69

Repository Administration

the repository, regardless if other processes are using the repository.

[ist-dbl ogs
Lists the paths of Berkeley DB log files associated with the repository. This list includes all log
files—those still in use by Subversion, as well as those no longer in use.

list-unused-dbl ogs
Lists the paths of Berkeley DB log files associated with, but no longer used by, the repository. Y ou
may safely remove these log files from the repository layout, possibly archiving them for use in the
event that you ever need to perform a catastrophic recovery of the repository.

| oad
Loads a set of revisions into a repository from a stream of data that uses the same portable dump
format generated by the dunp subcommand.

| st xns
List the names of uncommitted Subversion transactions that currently exist in the repository.

recover
Perform recovery steps on a repository that is in need of such, generally after afatal error has oc-
curred that prevented a process from cleanly shutting down its communication with the repository.

rmt xns
Cleanly remove Subversion transactions from the repository (conveniently fed by output from the
| st xns subcommand).

set| og
Replace the current value of the svn: | og (commit log message) property on a given revision in
the repository with a new value.

verify
Verify the contents of the repository. This includes, among other things, checksum comparisons of
the versioned data stored in the repository.

svndumpfilter

Since Subversion stores everything in an opagque database system, attempting manual tweaks is unwise,
if not quite difficult. And once data has been %pred in your repository, Subversion generally doesn't re-
ally provide an easy way to remove that data. — But inevitably, there will be times when you would like
to manipulate the history of your repository. You might need to strip out all instances of afile that was
accidentally added to the repository (and shouldn't be there for whatever reason). Or, perhaps you have
multiple projects sharing a single repository, and you decide to split them up into their own repositories.
To accomplish tasks like this, administrators need an more manageable and malleable representation of
the datain their repositories—the Subversion repository dump format.

The Subversion repository dump format is a human-readable representation of the changes that you've
made to your versioned data over time. You use the svnadmin dump command to generate the dump
data, and svhadmin load to populate a new repository with it (see the section called “Migrating a
Repository”). The great thing about the human-readibility aspect of the dump format is that, if you aren't
careless about it, you can manually inspect and modify it. Of course, the downside is that if you have
two years worth of repository activity encapsulated in what is likely to be a very large dumpfile, it could
take you along, long time to manually inspect and modify it.

While it won't be the most commonly used tool at the administrator's disposal, svndumpfilter provides
a very particular brand of useful functionality—the ability to quickly and easily modify that dumpfile
data by acting as a path-based filter. Simply give it either alist of paths you wish to keep, or alist of
paths you wish to not keep, then pipe your repository dump data through this filter. The result will be a

B3y, hat, by the way, is afeature, not a bug.

70

Repository Administration

modified stream of dump data that contains only the versioned paths you (explicitly or implicitly) re-
quested.

The syntax of syndumpfilter isasfollows:

$ svndunpfilter help
general usage: svndunpfilter SUBCOMVAND [ARGS & OPTIONS ...]
Type "svndunpfilter hel p <subcommand>" for help on a specific subcomrand.

Avai | abl e subconmands:
excl ude
i ncl ude
help (?, h)

There are only two interesting subcommands. They allow you to make the choice between explicit or
implicit inclusion of pathsin the stream:

excl ude
Filter out aset of paths from the dump data stream.

i ncl ude
Allow only the requested set of paths to pass through the dump data stream.

Let'slook arealistic example of how you might use this program. We discuss el sewhere (see the section
called “Choosing a Repository Layout”) the process of deciding how to choose a layout for the datain
your repositories—using one repository per project or combining them, arranging stuff within your
repository, and so on. But sometimes after new revisions start flying in, you rethink your layout and
would like to make some changes. A common change is the decision to move multiple projects which
are sharing asingle repository into a single repository for each project.

Our imaginary repository contains three projects. cal ¢, cal endar, and spr eadsheet . They have
been living side-by-side in alayout like this:

cal c/
trunk/
br anches/
t ags/

cal endar/
t runk/
br anches/
t ags/

spr eadsheet/
t runk/
br anches/
t ags/

To get these three projects into their own repositories, we first make a dumpfile of the whole repository:

svnadm n dunp /path/to/repos > repos-dunpfile
Dunped revi sion O.
Dunped revision 1.
Dunped revi sion 2.
Dunped revi sion 3.

* % X X gp

&%

71

Repository Administration

Next, run that dumpfile through the filter, each time including only one of our top-level directories, and
resulting in three new dumpfiles:

$ cat repos-dunpfile | svndunpfilter include calc > calc-dunpfile
$ cat repos-dunpfile | svndunpfilter include cal endar > cal -dunmpfile
$ cat repos-dunpfile | svndunpfilter include spreadsheet > ss-dunpfile

$

At this point, you have to make a decision. Each of your dumpfiles at this point will create avalid repos-
itory, but will preserve the paths exactly as they were in the origina repository. This means that even
though you would have arepository solely for your cal ¢ project, that repository would still have atop-
level directory named cal c. If youwant your t r unk, t ags, and br anches directoriesto live in root
of your repository, you might wish to edit your dumpfiles, tweaking the Node- pat h and Copyfrom
pat h headers to no longer have that first cal ¢/ path component. Also, you'll want to remove the sec-
tion of dump data that createsthe cal ¢ directory. It will look something like:

Node- pat h: calc
Node- action: add
Node- ki nd: dir
Content-length: O

All that remains now is to create your three new repositories, and load each dumpfile into the right
repository:

$ svnadm n create calc; svnadnmin |oad calc < cal c-dunpfile
<<< Started new transaction, based on original revision 1
* adding path : Mkefile ... done.
* adding path : button.c ... done.

$ svnadm n create cal endar; svnadmi n | oad cal endar < cal -dunpfile
<<< Started new transaction, based on original revision 1

* adding path : Makefile ... done.

* adding path : cal.c ... done.

$ svnadm n create spreadsheet; svnadmi n | oad spreadsheet < ss-dunpfile
<<< Started new transaction, based on original revision 1

* adding path : Mkefile ... done.

* adding path : ss.c ... done.

Both of svndumpfilter's subcommands accept options for deciding how to deal with “empty” revisions.
If agiven revision contained only changes to paths that were filtered out, that now-empty revision could
be considered uninteresting or even unwanted. So to give the user control over what to do with those re-
visions, svndumpfilter provides the following command-line options:

--drop-enpty-revs
Do not generate empty revisions at all—just omit them.

--renunber-revs

72

Repository Administration

If empty revisions are dropped (using the - - dr op- enpt y- r evs option), change the revision
numbers of the remaining revisions so that there are no gaps in the numeric sequence.

- - preserve-revprops
If empty revisions are not dropped, preserve the revision properties (log message, author, date, cus-
tom properties, etc.) for those empty revisions. Otherwise, empty revisions will only contain the
origina datestamp, and a generated log message that indicates that this revision was emptied by
svndumpfilter.

While svndumpfilter can be very useful, and a huge timesaver, there are unfortunately a couple of
gotchas. Firgt, this utility is overly sensitive to path semantics. Pay attention to whether paths in your
dumpfile are specified with or without leading slashes. You'll want to look at the Node- pat h and
Copyf r om pat h headers.

Node- pat h: spreadsheet/ Makefil e

If the paths lack leading slashes, you should not include leading slashes in the paths you pass to svn-
dumpfilter include and svndumpfilter exclude (and if they do, you should). Further, if your dumpfile
has an inconsistent usage of leading slashes for some reason, =~ you should probably normalize those
pathsto either al have, or all lack, leading slashes.

Also, copied paths can give you some trouble. Subversion supports copy operations in the repository,
where a new path is created by copying some already existing path. It is possible that at some point in
the lifetime of your repository, you might have copied a file or directory from some location that svn-
dumpfilter is excluding, to alocation that it is including. In order to make the dump data self-sufficient,
svndumpfilter needsto still show the addition of the new path—including the contents of any files cre-
ated by the copy—and not represent that addition as a copy from a source that won't exist in your fil-
tered dump data stream. But because the Subversion repository dump format only shows what was
changed in each revision, the contents of the copy source might not be readily available. If you suspect
that you have any copies of this sort in your repository, you might want to rethink your set of included/
excluded paths.

svnshell.py

The Subversion source tree also comes with a shell-like interface to the repository. The svnshell.py
Python script (located int ool s/ exanpl es/ in the source tree) uses Subversion's language bindings
(so you must have those properly compiled and installed in order for this script to work) to connect to
the repository and filesystem libraries.

Once started, the program behaves similarly to a shell program, allowing you to browse the various di-
rectories in your repository. Initialy, you are “positioned” in the root directory of the HEAD revision of
the repository, and presented with a command prompt. Y ou can use the hel p command at any time to
display alist of available commands and what they do.

$ svnshel |l .py /path/to/repos
<rev: 2 />% help
Avai | abl e conmands:

cat FILE . dunp the contents of FILE

cd DR . change the current working directory to DIR
exit . exit the shell

I s [PATH| . list the contents of the current directory

| st xns . list the transactions available for browsing
setrev REV : set the current revision to browse

\while svnadmin dump has a consistent leading slash policy—to not include them—other programs which generate dump data
might not be so consistent.

73

Repository Administration

settxn TXN : set the current transaction to browse
youngest . list the youngest browsabl e revision nunber
<rev: 2 />%

Navigating the directory structure of your repository is done in the same way you would navigate a reg-
ular Unix or Windows shell—using the cd command. At all times, the command prompt will show you
what revision (prefixed by r ev:) or transaction (prefixed by t xn:) you are currently examining, and at
what path location in that revision or transaction. Y ou can change your current revision or transaction
with the set r ev and set t xn commands, respectively. Asin a Unix shell, you can use the | s com-
mand to display the contents of the current directory, and you can use the cat command to display the
contents of afile.

Example 5.1. Using svnshell to Navigate the Repository

<rev: 2 />% 1|s

REV AUTHOR NODE- REV- 1 D S| ZE DATE NAME
1 sally < 2.0.1> Nov 15 11:50 A/
2 harry < 1.0.2> 56 Nov 19 08:19 iota

<rev: 2 />% cd A
<rev: 2 /IA>$ Is

REV ~ AUTHOR NODE- REV-ID Sl ZE DATE NAME
1 sally < 4.0.1> Nov 15 11:50 B/
1 sally < a.0.1> Nov 15 11:50 C/
1 sally < b.0. 1> Nov 15 11:50 DY
1 sally < 3.0.1> 23 Nov 15 11:50 nu
<rev: 2 /A>$ cd DG

<rev: 2 INDGS$ Is

REV AUTHOR NODE- REV-1D Sl ZE DATE NAME
1 sally < e.0.1> 23 Nov 15 11:50 pi
1 sally < f.0.1> 24 Nov 15 11:50 rho
1 sally < g.0.1> 24 Nov 15 11:50 tau

<rev: 2 /A>$ cd ../..

<rev: 2 />% cat iota

This is the file '"iota'.
Added this text in revision 2.

<rev: 2 />% setrev 1; cat iota
This is the file '"iota'.

<rev: 1 />% exit
$

As you can see in the previous example, multiple commands may be specified at a single command
prompt, separated by a semicolon. Also, the shell understands the notions of relative and absolute paths,
and will properly handlethe. and. . specia path components.

The youngest command displays the youngest revision. This is useful for determining the range of
valid revisions you can use as arguments to the set r ev command—you are allowed to browse al the
revisions (recalling that they are named with integers) between 0 and the youngest, inclusively. Deter-
mining the valid browsable transactions isn't quite as pretty. Use the Istxns command to list the transac-
tions that you are able to browse. The list of browsable transactions is the same list that svnadmin
Istxns returns, and the same list that is valid for use with svnlook's- - t r ansact i on option.

Once you've finished using the shell, you can exit cleanly by using the exit command. Alternatively, you

74

Repository Administration

can supply an end-of-file character—Control-D (though some Win32 Python distributions use the Win-
dows Control-Z convention instead).

Berkeley DB Utilities

All of your versioned filesystem's structure and data live in a set of Berkeley DB database tables within
the db subdirectory of your repository. This subdirectory is a regular Berkeley DB environment direc-
tory, and can therefore be used in conjunction with any of Berkeley's database tools (you can see the
documentation for these tools at SleepyCat's website, ht t p: / / www. sl eepycat . com).

For day-to-day Subversion use, these tools are unnecessary. Most of the functionality typically needed
for Subversion repositories has been duplicated in the svnadmin tool. For example, svnadmin list-
unused-dblogs and svnadmin list-dblogs perform a subset of what is provided by Berkeley's
db_archive command, and svnadmin recover reflects the common use-cases of the db_recover utility.

There are still a few Berkeley DB utilities that you mind find useful. The db_dump and db_load pro-
grams write and read, respectively, a custom file format which describes the keys and values in a Berke-
ley DB database. Since Berkeley databases are not portabl e across machine architectures, thisformat isa
useful way to transfer those databases from machine to machine, irrespective of architecture or operating
system. Also, the db_stat utility can provide useful information about the status of your Berkeley DB
environment, including detailed statistics about the locking and storage subsystems.

Repository Cleanup

Your Subversion repository will generally require very little attention once it is configured to your lik-
ing. However, there are times when some manual assistance from an administrator might be in order.
The svnadmin utility provides some helpful functionality to assist you in performing such tasks as

» modifying commit log messages,
» removing dead transactions,
» recovering “wedged” repositories, and

e migrating repository contents to a different repository.

Perhaps the most commonly used of svnadmin's subcommandsisset | og. When atransaction is com-
mitted to the repository and promoted to arevision, the descriptive log message associated with that new
revision (and provided by the user) is stored as an unversioned property attached to the revision itself. In
other words, the repository remembers only the latest value of the property, and discards previous ones.

Sometimes a user will have an error in her log message (a misspelling or some misinformation, per-
haps). If the repository is configured (using the pre-revprop-change and post-

r evpr op- change hooks; see the section called “Hook Scripts’) to accept changes to thislog message
after the commit is finished, then the user can “fix” her log message remotely using the svn program's
pr opset command (see Chapter 9, Subversion Complete Reference). However, because of the poten-
tial to lose information forever, Subversion repositories are not, by default, configured to allow changes
to unversioned properties—except by an administrator.

If alog message needs to be changed by an administrator, this can be done using svnadmin setlog. This
command changes the log message (the svn: | og property) on a given revision of arepository, reading
the new value from a provided file.

$ echo "Here is the new, correct |og nessage" > new og.txt
$ svnadm n setlog nyrepos new og.txt -r 388

75

Repository Administration

The svnadmin setlog command alone is still bound by the same protections against modifying unver-
sioned properties as a remote client is—the pr e- and post - r evpr op- change hooks are still trig-
gered, and therefore must be setup to accept changes of this nature. But an administrator can get around
these protections by passing the - - bypass- hooks option to svnadmin setlog command.

Warning

Remember, though, that by bypassing the hooks, you are likely avoiding such things as email
notifications of property changes, backup systems which track unversioned property changes,
and so on. In other words, be very careful about what you are changing, and how you changeit.

Another common use of svnadmin is to query the repository for outstanding—possibly Subver-
dead—sion transactions. In the event that a commit should fail, the transaction is usually cleaned up.
That is, the transaction itself is removed from the repository, and any data associated with (and only
with) that transaction is removed as well. Occasionally, though, a failure occurs in such a way that the
cleanup of the transaction never happens. This could happen for several reasons. perhaps the client oper-
ation was inelegantly terminated by the user, or a network failure might have occurred in the middle of
an operation, etc. Regardless of the reason, these dead transactions serve only to clutter the repository
and consume resources.

You can use svnadmin's| st xns command to list the names of the currently outstanding transactions.

$ svnadm n | stxns myrepos
19

3al

a45

$

Each item in the resultant output can then be used with svnlook (and its- -t r ansact i on option) to
determine who created the transaction, when it was created, what types of changes were made in the
transaction—in other words, whether or not the transaction is a safe candidate for removal! If so, the
transaction's name can be passed to svnadmin rmtxns, which will perform the cleanup of the transac-
tion. In fact, ther mt xns subcommand can take itsinput directly from the output of | st xns!

$ svnadm n rntxns nyrepos ~svhadmin | stxns myrepos’
$

If you use these two subcommands like this, you should consider making your repository temporarily in-
accessible to clients. That way, no one can begin a legitimate transaction before you start your cleanup.
The following is alittle bit of shell-scripting that can quickly generate information about each outstand-
ing transaction in your repository:

Example 5.2. txn-info.sh (Reporting Outstanding Transactions)

#!/ bi n/ sh

Cenerate informational output for all outstanding transactions in
a Subversion repository.

SVNADM N=/ usr /| ocal / bi n/ svnadm n
SVNLOOK=/ usr /| ocal / bi n/ svnl ook

REPOS="${ 1} "

76

Repository Administration

if ["x$REPCS" = x] ; then
echo "usage: $0 REPOS_PATH'
exit

fi

for TXN in “${SVNADM N} |stxns ${REPCS} ; do

echo "---[Transaction ${TXN} J---------mmmmmmm oo
${SVNLOOK} info "${REPCS}" --transaction "${TXN}"
done

Y ou can run the previous script using /path/to/txn-info.sh /path/to/repos. The output is basically a con-
catenation of several chunks of svnlook info output (see the section called “svnlook™), and will look
something like:

$ txn-info.sh myrepos
---[Transaction 19 J-----------mmmmmm

sally

2001-09-04 11:57:19 -0500 (Tue, 04 Sep 2001)

0

---[Transaction 38l J------------mmmmm oo
harry

2001- 09- 10 16:50: 30 -0500 (Mon, 10 Sep 2001)

39

Trying to commit over a faulty network.

---[Transaction a45 J-------------------- oo
sally

2001-09-12 11:09: 28 -0500 (Wed, 12 Sep 2001)

0

$

Usually, if you see a dead transaction that has no log message attached to it, this is the result of afailed
update (or update-like) operation. These operations use Subversion transactions under the hood to mimic
working copy state. Since they are never intended to be committed, Subversion doesn't require a log
message for those transactions. Transactions that do have log messages attached are aimost certainly
failed commits of some sort. Also, a transaction's datestamp can provide interesting information—for
example, how likely isit that an operation begun nine months ago is till active?

In short, transaction cleanup decisions need not be made unwisely. Various sources of in-
information—cluding Apache's error and access logs, the logs of successful Subversion commits, and so
on—can be employed in the decision-making process. Finally, an administrator can often simply com-
municate with a seemingly dead transaction's owner (via email, for example) to verify that the transac-
tionis, in fact, in azombie state.

Managing Disk Space

While the cost of storage has dropped incredibly in the past few years, disk usage is till avalid concern
for administrators seeking to version large amounts of data. Every additional byte consumed by the live
repository is a byte that needs to be backed up offsite, perhaps multiple time as part of rotating backup
schedules. Since the primary storage mechanism of a Subversion repository is a complex database sys-
tem, it is useful to know what pieces of data need to remain on the live site, which need to be backed up,
and which can be safely removed.

Until recently, the largest offender of disk space usage with respect to Subversion repositories was the
logfiles to which Berkeley DB performs its pre-writes before modifying the actual database files. These
files capture al the actions taken along the route of changing the database from one state to
another—while the database files reflect at any given time some state, the logfiles contain all the many
changes along the way between states. As such, they can start to accumulate quite rapidly.

77

Repository Administration

Fortunately, beginning with the 4.2 release of Berkeley DB, the database environment has the ability to
remove its own unused logfiles without any external procedures. Any repositories created using an sv-
nadmin which is compiled against Berkeley DB version 4.2 or greater will be configured for this auto-
matic log file removal. If you don't want this feature enabled, smply pass the - - bdb- | og- keep op-
tion to the svnadmin create command. If you forget to do this, or change your mind at alater time, sim-
ple edit the DB_CONFI Gfile found in your repository's db directory, comment out the line which con-
tains the set _fl ags DB _LOG AUTOREMOVE directive, and then run svnadmin recover on your
repository to force the configuration changes to take effect. See the section called “Berkeley DB Config-
uration” for more information about database configuration.

Without some sort of automatic log file removal in place, log files will accumulate as you use your
repository. Thisis actually somewhat of a feature of the database system—you should be able to recre-
ate your entire database using nothing but the log files, so these files can be useful for catastrophic
database recovery. But typicaly, you'll want to archive the log files that are no longer in use by Berke-
ley DB, and then remove them from disk to conserve space. Use the svnadmin list-unused-dblogs com-
mand to list the unused logfiles:

$ svnadmi n |ist-unused-dbl ogs /path/to/repos
/ path/to/repos/| og. 0000000031
/ pat h/to/ repos/| og. 0000000032
/ pat h/t o/ repos/ | og. 0000000033

$ svnadm n |ist-unused-dbl ogs /path/to/repos | xargs rm
di sk space recl ai nmed!

To keep the size of the repository as small as possible, Subversion uses deltification (or, “deltified stor-
age”) within the repository itself. Deltification involves encoding the representation of a chunk of data
as acollection of differences against some other chunk of data. If the two pieces of data are very similar,
this ddltification results in storage savings for the deltified chunk—rather than taking up space equal to
the size of the original data, it only takes up enough space to say, “I look just like this other piece of data
over here, except for the following couple of changes.” Specificaly, each time a new version of afileis
committed to the repository, Subversion encodes the previous version (actually, several previous ver-
sions) as a delta against the new version. The result is that most of the repository data that tends to be
sizable—namely, the contents of versioned files—is stored at a much smaller size than the original full-
“text” representation of that data.

Note

Because all of the Subversion repository data that is subject to deltification is stored in a single
Berkeley DB database file, reducing the size of the stored values will not necessarily reduce the
size of the database file itself. Berkeley DB will, however, keep internal records of unused ar-
eas of the database file, and use those areas first before growing the size of the database file. So
while deltification doesn't produce immediate space savings, it can drastically slow future
growth of the database.

Repository Recovery

In order to protect the data in your repository, the database back-end uses a locking mechanism. This
mechanism ensures that portions of the database are not simultaneously modified by multiple database
accessors, and that each process sees the data in the correct state when that data is being read from the
database. When a process needs to change something in the database, it first checks for the existence of
alock on the target data. If the data is not locked, the process locks the data, makes the change it wants
to make, and then unlocks the data. Other processes are forced to wait until that lock is removed before
they are permitted to continue accessing that section of the database.

In the course of using your Subversion repository, fatal errors (such as running out of disk space or

78

Repository Administration

available memory) or interruptions can prevent a process from having the chance to remove the locks it
has placed in the database. The result is that the back-end database system gets “wedged”’. When this
happens, any attempts to access the repository hang indefinitely (since each new accessor is waiting for
alock to go away—which isn't going to happen).

First, if this happens to your repository, don't panic. Subversion's filesystem takes advantage of database
transactions and checkpoints and pre-write journaling to ensure that only the most catastrophic of events
15 can permanently destroy a database environment. A sufficiently paranoid repository administrator
will be making off-site backups of the repository datain some fashion, but don't call your system admin-
istrator to restore a backup tape just yet.

Secondly, use the following recipe to attempt to “unwedge” your repository:

1. Make sure that there are no processes accessing (or attempting to access) the repository. For net-
worked repositories, this means shutting down the Apache HTTP Server, too.

2. Become the user who owns and manages the repository. This is important, as recovering a reposi-
tory while running as the wrong user can tweak the permissions of the repository's files in such a
way that your repository will still be inaccessible even after it is*unwedged”.

3. Runthe command svhadmin recover /path/to/repos. Y ou should see output like this:

Pl ease wait; recovering the repository nmay take sone tine...

Recovery conpl et ed.
The | atest repos revision is 19.

This command may take many minutes to complete.

4, Restart the Subversion server.

This procedure fixes almost every case of repository lock-up. Make sure that you run this command as
the user that owns and manages the database, not just as r oot . Part of the recovery process might in-
volve recreating from scratch various database files (shared memory regions, for example). Recovering
asr oot will create those files such that they are owned by r oot , which means that even after you re-
store connectivity to your repository, regular users will be unable to accessiit.

If the previous procedure, for some reason, does not successfully unwedge your repository, you should
do two things. First, move your broken repository out of the way and restore your latest backup of it.
Then, send an email to the Subversion user list (at <user s@ubversi on. tigris. or g>) describ-
ing your problem in detail. Data integrity is an extremely high priority to the Subversion devel opers.

Migrating a Repository

A Subversion filesystem has its data spread throughout various database tables in afashion generally un-
derstood by (and of interest to) only the Subversion developers themselves. However, circumstances
may arise that call for all, or some subset, of that data to be collected into a single, portable, flat file for-
mat. Subversion provides such a mechanism, implemented in a pair of svnadmin subcommands: dunp
and| oad.

The most common reason to dump and load a Subversion repository is due to changes in Subversion it-
self. As Subversion matures, there are times when certain changes made to the back-end database
schema cause Subversion to be incompatible with previous versions of the repository. The recom-
mended course of action when you are upgrading across one of those compatibility boundariesis arela
tively simple process:

15E.g.: hard drive + huge electromagnet = disaster.

79

Repository Administration

1. Using your current version of svnadmin, dump your repositories to dump files.
2. Upgrade to the new version of Subversion.

3. Move your old repositories out of the way, and create new empty ones in their place using your
new svnadmin.

4. Again using your new svnadmin, load your dump files into their respective, just-created reposito-
ries.

5. Finaly, be sure to copy any customizations from your old repositories to the new ones, including
DB_CONFI Gfilesand hook scripts. You'll want to pay attention to the release notes for the new re-
lease of Subversion to see if any changes since your last upgrade affect those hooks or configura-
tion options.

svnadmin dump will output a range of repository revisions that are formatted using Subversion's cus-
tom filesystem dump format. The dump format is printed to the standard output stream, while informa
tive messages are printed to the standard error stream. This allows you to redirect the output stream to a
file while watching the status output in your terminal window. For example:

$ svnl ook youngest myrepos
6

Dunped revi si on
Dunped revi si on 1.

$ svnadni n dunp rryrepos > dunpfile
*
* Dunped revision 2.

;*“Durrped revision 25.
* Dunped revision 26.

At the end of the process, you will have asingle file (dunpf i | e in the previous example) that contains
all the data stored in your repository in the requested range of revisions. Note that svnadmin dump is
reading revision trees from the repository just like any other “reader” process would (svn checkout, for
example.) So it's safe to run this command at any time.

The other subcommand in the pair, svnadmin load, parses the standard input stream as a Subversion
repository dump file, and effectively replays those dumped revisions into the target repository for that
operation. It also gives informative feedback, this time using the standard output stream:

$ svnadm n | oad new epos < dunpfile

<<< Started new txn, based on original revision 1
* adding path : A ... done.
* adding path : A/B ... done.

~----2- Committed newrev 1 (1 oaded fromoriginal rev 1) >>>
<<< Started new txn, based on original revision 2

* editing path : Anu ... done.

* editing path : ADGrho ... done.

——————— Conmitted newrev 2 (loaded fromoriginal rev 2) >>>

<<< Started new txn, based on original revision 25
* editing path : A/D/gamma ... done.

80

Repository Administration

——————— Committed new rev 25 (loaded fromoriginal rev 25) >>>

<<< Started new txn, based on original revision 26
* adding path : A/Z/ zeta ... done.
* editing path : A'nmu ... done.

——————— Conmitted new rev 26 (|l oaded fromoriginal rev 26) >>>

Note that because svnadmin uses standard input and output streams for the repository dump and load
process, people who are fegling especially saucy can try things like this (perhaps even using different
versions of svnadmin on each side of the pipe):

$ svnadmi n create new epos .
$ svnadm n dunp nyrepos | svnadm n | oad new epos

We mentioned previously that svnadmin dump outputs arange of revisions. Usethe- - r evi si on op-
tion to specify a single revision to dump, or a range of revisions. If you omit this option, all the existing
repository revisions will be dumped.

$ svnadm n dunp nmyrepos --revision 23 > rev-23.dunpfile
$ svnadmi n dunp nyrepos --revision 100: 200 > revs-100-200. dunmpfile

As Subversion dumps each new revision, it outputs only enough information to allow a future loader to
re-create that revision based on the previous one. In other words, for any given revision in the dump file,
only the items that were changed in that revision will appear in the dump. The only exception to this rule
isthefirst revision that is dumped with the current synadmin dump command.

By default, Subversion will not express the first dumped revision as merely differences to be applied to
the previous revision. For one thing, there is no previous revision in the dump filel And secondly, Sub-
version cannot know the state of the repository into which the dump data will be loaded (if it ever, in
fact, occurs). To ensure that the output of each execution of svnadmin dump is self-sufficient, the first
dumped revision is by default a full representation of every directory, file, and property in that revision
of the repository.

However, you can change this default behavior. If you add the - - i ncr enent al option when you
dump your repository, svnadmin will compare the first dumped revision against the previous revisionin
the repository, the same way it treats every other revision that gets dumped. It will then output the first
revision exactly as it does the rest of the revisions in the dump range—mentioning only the changes that
occurred in that revision. The benefit of thisis that you can create several small dump files that can be
loaded in succession, instead of one large one, like so:

$ svnadm n dunp nyrepos --revision 0:1000 > dunpfilel
$ svnadm n dunp nyrepos --revision 1001: 2000 --increnmental > dunpfile2
$ svnadmi n dunp nyrepos --revision 2001: 3000 --incremental > dunpfile3

These dump files could be loaded into a new repository with the following command sequence:

$ svnadm n | oad new epos < dunpfilel
$ svnadm n | oad new epos < dunpfil e2
$ svnadm n | oad new epos < dunpfile3

Another neat trick you can perform with this - - i ncr enent al option involves appending to an exist-

81

Repository Administration

ing dump file a new range of dumped revisions. For example, you might have a post - comi t hook
that simply appends the repository dump of the single revision that triggered the hook. Or you might
have a script that runs nightly to append dump file data for al the revisions that were added to the repos-
itory since the last time the script ran. Used like this, svnadmin's dunp and | oad commands can be a
valuable means by which to backup changes to your repository over time in case of a system crash or
some other catastrophic event.

The dump format can also be used to merge the contents of several different repositories into a single
repository. By using the - - par ent - di r of svnadmin load, you can specify a new virtual root direc-
tory for the load process. That means if you have dumpfiles for three repositories, say cal c-
dunpfil e, cal -dunmpfil e, and ss- dunpfil e, you can first create a new repository to hold them
all:

$ svnadnin create /path/to/projects
$

Then, make new directories in the repository which will encapsulate the contents of each of the three
previous repositories:

$ svn nkdir -m"lInitial project roots" \
file:///path/to/projects/calc \
file:///path/tolprojects/cal endar \
file:///path/tolprojects/spreadsheet
gorrm'tted revision 1.

Lastly, load the individual dumpfilesinto their respective locations in the new repository:

$ svnadmn |load /path/to/projects --parent-dir calc < cal c-dunpfile
$ svnadmin | oad /path/to/projects --parent-dir cal endar < cal -dunpfile
S'B"svnadm' n load /path/to/projects --parent-dir spreadsheet < ss-dumpfile

WEe'll mention one final way to use the Subversion repository dump format—conversion from a different
storage mechanism or version control system altogether. Because the dump file format is, for the most
part, human-readable, 16t should be el atively easy to describe generic sets of changes—each of which
should be treated as a new revision—using this file format. In fact, the cvs2svn.py utility (see the sec-
tion called “Converting a Repository from CV'S to Subversion”) uses the dump format to represent the
contents of a CV S repository so that those contents can be moved in a Subversion repository.

Repository Backup

Despite numerous advances in technology since the birth of the modern computer, one thing unfortu-
nately rings true with crystalline clarity—sometimes, things go very, very awry. Power outages, network
connectivity dropouts, corrupt RAM and crashed hard drives are but a taste of the evil that Fate is poised
to unleash on even the most conscientious administrator. And so we arrive at a very important
topic—how to make backup copies of your repository data.

There are generadly two types of backup methods available for Subversion repository
administrators—incremental and full. We discussed in an earlier section of this chapter how to use sv-
nadmin dump --incremental to perform an incremental backup (see the section called “Migrating a

18The subversion repository dump format resembles an RFC-822 format, the same type of format used for most email.

82

Repository Administration

Repository”). Essentialy, the ideais to only backup at a given time the changes to the repository since
the last time you made a backup.

A full backup of the repository is quite literally a duplication of the entire repository directory (whichin-
cludes the Berkeley database environment). Now, unless you temporarily disable all other access to your
repository, simply doing a recursive directory copy runs the risk of generating a faulty backup, since
someone might be currently writing to the database.

Fortunately, Sleepycat's Berkeley DB documents describe a certain order in which database files can be
copied that will guarantee a valid backup copy. And better still, you don't have to implement that algo-
rithm yourself, because the Subversion development team has aready done so. The hot-backup.py
scriptisfound inthet ool s/ backup/ directory of the Subversion source distribution. Given areposi-
tory path and a backup location, hot-backup.py—which is really just a more intelligent wrapper around
the svhadmin hotcopy command—will perform the necessary steps for backing up your live
repository—without requiring that you bar public repository access at all—and then will clean out the
dead Berkeley log files from your live repository.

Even if you also have an incremental backup, you might want to run this program on aregular basis. For
example, you might consider adding hot-backup.py to a program scheduler (such as crond on Unix
systems). Or, if you prefer fine-grained backup solutions, you could have your post-commit hook script
call hot-backup.py (see the section called “Hook Scripts’), which will then cause a new backup of your
repository to occur with every new revision created. Simply add the following to the hooks/
post - commi t script in your live repository directory:

(cd /path/to/ hook/scripts; ./hot-backup.py ${REPCS} /path/to/backups &)

The resulting backup is a fully functional Subversion repository, able to be dropped in as a replacement
for your live repository should something go horribly wrong.

There are benefits to both types of backup methods. The easiest is by far the full backup, which will al-
ways result in a perfect working replica of your repository. This again means that should something bad
happen to your live repository, you can restore from the backup with a simple recursive directory copy.
Unfortunately, if you are maintaining multiple backups of your repository, these full copies will each eat
up just as much disk space as your live repository.

Incremental backups using the repository dump format are excellent to have on hand if the database
schema changes between successive versions of Subversion itself. Since afull repository dump and load
are generally required to upgrade your repository to the new schema, it's very convenient to aready have
half of that process (the dump part) finished. Unfortunately, the creation of—and restoration in-
from—cremental backups takes longer, as each commit is effectively replayed into either the dumpfile
or the repository.

In either backup scenario, repository administrators need to be aware of how modifications to unver-
sioned revision properties affect their backups. Since these changes do not themselves generate new re-
visions, they will not trigger, gost-commit hooks, and may not even trigger the pre-revprop-change and
post-revprop-change hooks. 7 And since you can change revision properties without respect to chrono-
logical order—you can change any revision's properties at any time—an incremental backup of the latest
few revisions might not catch a property modification to arevision that was included as part of a previ-
ous backup.

Generally speaking, only the truly paranoid would need to backup their entire repository, say, every time
a commit occurred. However, assuming that a given repository has some other redundancy mechanism
in place with relatively fine granularity (like per-commit emails), a hot backup of the database might be
something that a repository administrator would want to include as part of a system-wide nightly
backup. For most repositories, archived commit emails alone provide sufficient redundancy as restora-
tion sources, at least for the most recent few commits. But it's your data—protect it as much as you'd
like.

Ysmadmin setlog can be called in away that bypasses the hook interface altogether.

83

Repository Administration

Often, the best approach to repository backups is a diversified one. You can leverage combinations of
full and incremental backups, plus archives of commit emails. The Subversion developers, for example,
back up the Subversion source code repository after every new revision is created, and keep an archive
of all the commit and property change notification emails. Y our solution might be similar, but should be
catered to your needs and that delicate balance of convenience with paranoia. And while all of this might
not save your hardware from the iron fist of Fate, = it should certainly help you recover from those try-
ing times.

Adding Projects

Once your repository is created and configured, all that remainsisto begin using it. If you have a collec-
tion of existing data that is ready to be placed under version control, you will more than likely want to
use the svn client program'si nport subcommand to accomplish that. Before doing this, though, you
should carefully consider your long-term plans for the repository. In this section, we will offer some ad-
vice on how to plan the layout of your repository, and how to get your data arranged in that layout.

Choosing a Repository Layout

While Subversion alows you to move around versioned files and directories without any loss of infor-
mation, doing so can still disrupt the workflow of those who access the repository often and come to ex-
pect things to be at certain locations. Try to peer into the future a bit; plan ahead before placing your
data under version control. By “laying out” the contents of your repositories in an effective manner the
first time, you can prevent aload of future headaches.

There are a few things to consider when setting up Subversion repositories. Let's assume that as reposi-
tory administrator, you will be responsible for supporting the version control system for several projects.
The first decision is whether to use a single repository for multiple projects, or to give each project its
own repository, or some compromise of these two.

There are benefits to using a single repository for multiple projects, most obviously the lack of dupli-
cated maintenance. A single repository means that there is one set of hook scripts, one thing to routinely
backup, one thing to dump and load if Subversion releases an incompatible new version, and so on.
Also, you can move data between projects easily, and without losing any historical versioning informa-
tion.

The downside of using a single repository is that different projects may have different commit mailing
lists or different authentication and authorization requirements. Also, remember that Subversion uses
repository-global revision numbers. Some folks don't like the fact that even though no changes have
been made to their project lately, the youngest revision number for the repository keeps climbing be-
cause other projects are actively adding new revisions.

A middle-ground approach can be taken, too. For example, projects can be grouped by how well they re-
late to each other. Y ou might have a few repositories with a handful of projectsin each repository. That
way, projects that are likely to want to share data can do so easily, and as new revisions are added to the
repository, at least the developers know that those new revisions are at least remotely related to every-
one who uses that repository.

After deciding how to organize your projects with respect to repositories, you'll probably want to think
about directory hierarchies in the repositories themselves. Because Subversion uses regular directory
copies for branching and tagging (see Chapter 4, Branching and Merging), the Subversion community
recommends that you choose a repository location for each project root—the “top-most” directory
which contains data related to that project—and then create three subdirectories beneath that root:
t r unk, meaning the directory under which the main project development occurs; br anches, whichis
adirectory in which to create various named branches of the main development ling; t ags, whichisa
directory of branches that are created, and perhaps destroyed, but never changed.

18y o know—the collective term for all of her “ficklefingers’.

84

Repository Administration

For example, your repository might ook like:

cal c/

trunk/

t ags/

br anches/
cal endar/

t runk/

t ags/

br anches/
spr eadsheet/

t runk/

t ags/

br anches/

Note that it doesn't matter where in your repository each project root is. If you have only one project per
repository, the logical place to put each project root is at the root of that project's respective repository.
If you have multiple projects, you might want to arrange them in groups inside the repository, perhaps
putting projects with similar goals or shared code in the same subdirectory, or maybe just grouping them
alphabetically. Such an arrangment might look like:

util s/
cal ¢/
t runk/
t ags/
br anches/
cal endar/
t runk/
t ags/
br anches/

of ficel
spreadsheet/
t runk/
t ags/
branches/

Lay out your repository in whatever way you see fit. Subversion does not expect or enforce a layout
schema—in its eyes, a directory is a directory is a directory. Ultimately, you should choose the reposi-
tory arrangement that meets the needs of the people who work on the projects that live there.

Creating the Layout, and Importing Initial Data

After deciding how to arrange the projects in your repository, you'll probably want to actually populate
the repository with that layout and with initial project data. There are a couple of ways to do thisin Sub-
version. You could use the svn mkdir command (see Chapter 9, Subversion Complete Reference) to cre-
ate each directory in your skeletal repository layout, one-by-one. A quicker way to accomplish the same
task is to use the svn import command (see the section called “svn import”). By first creating the layout
in atemporary location on your drive, you can import the whole layout tree into the repository in a sin-
gle commit:

$ nkdir tnpdir

85

Repository Administration

$ cd tnpdir

$ nmkdir projectA

$ nmkdir projectAtrunk

$ nkdir projectA branches

$ nkdir projectAtags

$ nkdir projectB

$ nkdir projectB/trunk

$ nkdir projectB/ branches

$ nkdir projectB/tags

$ svn inmport . file:///path/to/repos --nmessage 'Initial
Addi ng proj ect A

Addi ng proj ect A/ trunk
Addi ng proj ect A/ branches
Addi ng proj ect A/ tags
Addi ng proj ectB

Addi ng proj ect B/ trunk
Addi ng pr oj ect B/ br anches
Addi ng proj ect B/ t ags

ébn’m'tted revision 1.
$cd ..
$rm-rf tnpdir
$

repository |ayout'

Once you have your skeletal layout in place, you can begin importing actual project data into your
repository, if any such data exists yet. Once again, there are several ways to do this. You could use the
svn import command. You could checkout a working copy from your new repository, move and ar-
range project data inside the working copy, and use the svn add and svn commit commands. But once
we start talking about such things, we're no longer discussing repository administration. If you aren't al-
ready familiar with the svn client program, see Chapter 3, Guided Tour.

Summary

By now you should have a basic understanding of how to create, configure, and maintain Subversion
repositories. We've introduced you to the various tools that will assist you with this task. Throughout the
chapter, we've noted common administration pitfalls, and suggestions for avoiding them.

All that remains is for you to decide what exciting data to store in your repository, and finaly, how to
make it available over a network. The next chapter is all about networking.

86

Chapter 6. Server Configuration

A Subversion repository can be accessed simultaneously by clients running on the same machine on
which the repository resides using thefi | e: / // method. But the typical Subversion setup involves a
single server machine being accessed from clients on computers al over the office—or, perhaps, all over
the world.

This section describes how to get your Subversion repository exposed outside its host machine for use
by remote clients. We will cover Subversion's currently available server mechanisms, discussing the
configuration and use of each. After reading this section, you should be able to decide which networking
setup is right for your needs, and understand how to enable such a setup on your host computer.

Overview

Subversion was designed with an abstract network layer. This means that a repository can be program-
matically accessed by any sort of server process, and the client “repository access’ APl allows program-
mers to write plugins that speak relevant network protocols. In theory, Subversion can sport an infinite
number of network implementations. In practice, there are only two servers at the time of writing.

Apache is an extremely popular webserver; using the mod_dav_svn module, Apache can access a
repository and make it available to clients via WebDAV/DeltaV protocol, which is an extension of
HTTP. In the other corner is svnserve: a small, standalone server program that speaks a custom protocol
with clients.

Note that Subversion, as an open-source project, does not officially endorse any server as “primary” or
“official”. Neither network implementation is treated as a second-class citizen; each server has distinct
advantages and disadvantages. In fact, it's possible for different serversto run in parallel, each accessing
your repositories in its own way, and each without hindering the other (see the section called Support-
“ing Multiple Repository Access Methods’). Here's a brief overview and comparison of the two avail-
able Subversion servers—as an administrator, it's up to you to choose whatever works best for you and
your Users.

Table 6.1. Network Server Comparison

Feature Apache + mod_dav_svn svnserve
Authentication options HTTP(S) basic auth, X.509 cer-|CRAM-MD?5 or SSH
tificates, LDAP, NTLM, or any
other mechanism available to
Apache httpd
User account options private 'users file private 'users file, or existing
system (SSH) accounts
Authorization options blanket read/write access, or per-|blanket read/write access
directory access control
Encryption viaoptional SSL viaoptional SSH tunnel
Interoperability partially usable by other Web-|not interoperable
DAV clients
Web Viewing limited built-in support, or vialvia 3rd-party tools such as
3rd-party tools such as ViewCVS |ViewCVS
Speed somewhat slower somewhat faster
Initial setup somewhat complex fairly smple

87

Server Configuration

Network Model

This section is a general discussion of how a Subversion client and server interact with one another, re-
gardless of the network implementation you're using. After reading, you'll have a good understanding of
how a server can behave and the different ways in which a client can be configured to respond.

Requests and Responses

The Subversion client spends most of its time managing working copies. When it needs information
from arepository, however, it makes a network request, and the server responds with an appropriate an-
swer. The details of the network protocol are hidden from the user; the client attempts to access a URL,
and depending on the URL schema, a particular protocol is used to contact the server (see Repository
URLS). Users can run svn --version to see which URL schemas and protocols the client knows how to
use.

When the server process receives a client request, it typically demands that the client identify itself. It is-
sues an authentication challenge to the client, and the client responds by providing credentials back to
the server. Once authentication is complete, the server responds with the original information the client
asked for. Notice that this system is different from systems like CV'S, where the client pre-emptively of-
fers credentials (“logs in”) to the server before ever making a request. In Subversion, the server “pulls’
credentials by challenging the client at the appropriate moment, rather than the client “pushing” them.
This makes certain operations more elegant. For example, if a server is configured to allow anyone in
the world to read a repository, then the server will never issue an authentication challenge when a client
attemptsto svn checkout.

If the client's network request writes new data to the repository (e.g. svn commit), then a new revision
tree is created. If the client's request was authenticated, then the authenticated user's name is stored as
the value of the svn: aut hor property on the new revision (see the section called “Unversioned Prop-
erties’). If the client was not authenticated (in other words, the server never issued an authentication
challenge), then therevision'ssvn: aut hor property is empty.

Client Credentials Caching

Many servers are configured to require authentication on every request. This can become a big annoy-
ance to users, who are forced to type their passwords over and over again.

Happily, the Subversion client has aremedy for this: a built-in system for caching authentication creden-
tials on disk. By default, whenever the commandline client successfully authenticates itself to a server, it
saves the credentials in the user's private runtime configuration area—in ~/ . subver si on/ aut h/ on
Unix-like systems or Y%APPDATAY Subver si on/ aut h/ on Windows. (The runtime area is covered
in more detail in the section called “ Runtime Configuration Area’.) Successful credentials are cached on
disk, keyed on a combination of hostname, port, and authentication realm.

When the client receives an authentication challenge, it first looks for the appropriate credentials in the
disk cache; if not present, or if the cached credentials fail to authenticate, then the client simply prompts
the user for the information.

The security-paranoid people may be thinking to themselves, “ Caching passwords on disk? That's terri-
ble! Y ou should never do that!” But please remain calm. First, theaut h/ caching areais permission-pro-
tected so that only the user (owner) can read data from it, not the world at large. If that's till not safe
enough for you, you can disable credential caching. To disable caching for a single command, passthe -

- no- aut h- cache option:

$ svn commit -F |l og_msg.txt --no-auth-cache
Aut hentication realm <svn://host.exanpl e.com 3690> exanple realm

Brhis problem is actually a FAQ, resulting from a misconfigured server setup.

88

Server Configuration

User nanme: joe
Password for 'joe':
Addi ng newfile

Transmtting file data .
Committed revision 2324.

password was not cached, so a second commit still pronpts us

$ svn rmnewfile

$ svn commit -F new nsg.txt

Aut henti cation realm <svn://host.exanpl e.com 3690> exanple realm
User nanme: joe

[...]

Or, if you want to disable credential caching permanently, you can edit your runtime confi g file
(located next to the aut h/ directory). Simply set st or e- aut h- cr eds to no, and no credentials will
be cached on disk, ever.

[aut h]
store-auth-creds = no

Sometimes users will want to remove specific credentials from the disk cache. To do this, you need to
navigate into the aut h/ area and manually delete the appropriate cache file. Credentials are cached in
individua files; if you look inside each file, you will see keys and values. The svn: real nstri ng
key describes the particular server realm that the file is associated with:

$ I's ~/.subversion/auth/svn. sinple/
5671adf 2865e267db74f 09ba6f 872c28
3893ed123bh39500bca8a0b382839198e
5¢3c22968347b390f 349f f 340196ed39

$ cat ~/.subversion/auth/svn. sinpl e/ 5671adf 2865e267db74f 09ba6f 872c28

K 8

user nane

V 3

j oe

K 8

passwor d

V 4

bl ah

K 15

svn:real mstring
V 45
<https://svn. domai n.com 443> Joe's repository
END

Once you have located the proper cache file, just deleteit.

One last word about client authentication behavior: a bit of explanation about the - - user nane and -

- passwor d options is needed. Many client subcommands accept these options; however it is impor-
tant to understand using these options does not automatically send credentials to the server. As discussed
earlier, the server “pulls’ credentials from the client when it deems necessary; the client cannot “push”
them at will. If a username and/oE 0oassword are passed as options, they will only be presented to the
server if the server requests them. <~ Typically, these options are used when:

20Agai n, a common mistake is to misconfigure a server so that it never issues an authentication challenge. When users pass -

- user name and - - passwor d options to the client, they're surprised to see that they're never used, i.e. new revisions still ap-
pear to have been committed anonymously!

89

Server Configuration

» the user wants to authenticate as a different user than her system login name, or
* ascript wants to authenticate without using cached credentials.

Hereisafinal summary that describes how a Subversion client behaves when it receives an authentica-
tion challenge:

1. Check whether the user specified any credentials as commandline options, via - - user namre and/
or - - passwor d. If not, or if these options fail to authenticate successfully, then

2. Look up the server'srealm in the runtime aut h/ area, to seeif the user already has the appropriate
credentials cached. If not, or if the cached credentials fail to authenticate, then

3. Resort to prompting the user.

If the client successfully authenticates by any of the methods listed above, it will attempt to cache the
credentials on disk (unless the user has disabled this behavior, as mentioned earlier.)

svnserve, a custom server

The svnserve program is a lightweight server, capable of speaking to clients over TCP/IP using a cus-
tom, stateful protocol. Clients contact an svnserve server by using URLs that begin withthesvn: // or
svn+ssh: // schema. This section will explain the different ways of running svnserve, how clients
authenticate themselves to the server, and how to configure appropriate access control to your reposito-
ries.

Invoking the Server

There afew different ways to invoke the svnserve program. If invoked with no options, you'll see noth-
ing but a help message. However, if you're planning to have inetd launch the process, then you can pass
the-i (- -i netd) option:

$ svnserve -i
(success (1 2 (ANONYMOUS) (edit-pipeline)))

When invoked with the - - i net d option, svnserve attempts to speak with a Subversion client via stdin
and stdout using a custom protocol. Thisis the standard behavior for a program being run viainetd. The
IANA has reserved port 3690 for the Subversion protocol, so on a Unix-like system you can add lines to
/ et c/ servi ces likethese (if they don't already exist):

svn 3690/ tcp # Subversion
svn 3690/ udp # Subversion

And if your system is using a classic Unix-like inetd daemon, you can add this line to /
etc/inetd. conf:

svn streamtcp nowait svnowner /usr/local/bin/svnserve svnserve -i

Make sure “svnowner” is a user which has appopriate permissions to access your repositories. Now,

90

Server Configuration

when a client connection comes into your server on port 3690, inetd will spawn an svnserve process to
serviceit.

A second option isto run svnser ve as a standalone “daemon” process. Use the - d option for this:

$ svnserve -d
svnserve is now running, listening on port 3690

When running svnserve in daemon mode, you can use the --listen-port= and -
-1 i st en- host = options to customize the exact port and hosthame to “bind” to.

There's still athird way to invoke svnserve, and that's in “tunnel mode”, with the - t option. This mode
assumes that a remote-service program such as RSH or SSH has successfully authenticated a user and is
now invoking a private svnserve process as that user. The svnserve program behaves normally
(communicating via stdin and stdout), and assumes that the traffic is being automatically redirected over
some sort of tunnel back to the client. When svnserve isinvoked by atunnel agent like this, be sure that
the authenticated user has full read and write access to the repository database files. (See Servers and
Permissions: A Word of Warning.) It's essentially the same as a local user accessing the repository via
file:/// URLs.

Serversand Permissions: A Word of Warning

First, remember that a Subversion repository is a collection of BerkeleyDB database files; any process
which accesses the repository directly needs to have proper read and write permissions on the entire
repository. If you're not careful, this can lead to a number of headaches. Be sure to read the section
called “ Supporting Multiple Repository Access Methods’.

Secondly, when configuring svnserve, Apache httpd, or any other server process, keep in mind that you
might not want to launch the server process as the user r oot (or as any other user with unlimited per-
missions). Depending on the ownership and permissions of the repositories you're exporting, it's often
prudent to use a different—perhaps custom—user. For example, many administrators create a new user
named svn, grant that user exclusive ownership and rights to the exported Subversion repositories, and
only run their server processes as that user.

Once the svnserve program is running, it makes every repository on your system available to the net-
work. A client needs to specify an absolute path in the repository URL. For example, if arepository is
located at /usr/local/repositories/projectl, then a client would reach it via
svn:// host. exanpl e. com usr/ | ocal /repositories/projectl .Toincrease security,
you can passthe - r option to svnserve, which restricts it to exporting only repositories below that path:

$ svnserve -d -r /usr/local/repositories

Using the - r option effectively modifies the location that the program treats as the root of the remote
filesystem space. Clients then use URLs that have that path portion removed from them, leaving much
shorter (and much lessrevealing) URLS:

$ svn checkout svn://host.exanpl e.com projectl

Built-in authentication and authorization

91

Server Configuration

When aclient connects to an svnser ve process, the following things happen:

» Theclient selects a specific repository.

» The server processes the repository's conf / svnser ve. conf file, and begins to enforce any au-
thentication and authorization policies defined therein.

» Depending on the situation and authorization policies,

< the client may be allowed to make requests anonymously, without ever receiving an authentica-
tion challenge, OR

« theclient may be challenged for authentication at any time, OR

o if operating in “tunnel mode”, the client will declare itself to be already externally authenticated.

At the time of writing, the server only knows how to send a CRAM-MD5 21 authentication challenge. In
essence, the server sends a bit of data to the client. The client uses its password to encrypt the data with
the MD5 hash algorithm, and sends it back. The server performs the same computation with the stored
password to verify that the result is identical. At no point does the actual password travel over the net-
work.

It's also possible, of course, for the client to be externally authenticated via a tunnel agent, such as SSH.
In that case, the server simply examines the user it's running as, and uses it as the authenticated user-
name.

As you've aready guessed, arepository's svnser ve. conf fileis the central mechanism for control-
ling authentication and authorization policies. The file has the same format as other configuration files
(see the section called “Runtime Configuration Area’): section names are marked by square brackets ([

and]), comments begin with hashes (#), and each section contains specific variables that can be set
(vari abl e = val ue). Let'swalk through thisfile and learn how to use them.

Create a 'users' file and realm

For now, the [gener al] section of the svnser ve. conf has al the variables you need. Begin by
defining a file which contains usernames and passwords, and an authentication realm:

[general] .
password-db = userfile
real m = exanple realm

The r eal mis a name that you define. It tells clients which sort of “authentication namespace” they're
connecting to; the Subversion client displays it in the authentication prompt, and uses it as a key (along
with the server's hostname and port) for caching credentials on disk (see the section called “Client Cre-
dentials Caching”.) The passwor d- db variable points to a separate file that contains a list of user-
names and passwords, using the same familiar format. For example:

[users]

harry = foopassword
sally = barpassword
215ee RFC 2195.

92

Server Configuration

The value of passwor d- db can be an absolute or relative path to the users file. For many admins, it's
easy to keep the file right in the conf/ area of the repository, alongside svnser ve. conf . On the
other hand, it's possible you may want to have two or more repositories share the same users file; in that
case, the file should probably live in a more public place. The repositories sharing the users file should
also be configured to have the same realm, since the list of users essentially defines an authentication
realm. Wherever the file lives, be sure to set the file's read and write permissions appropriately. If you
know which user(s) svnservewill run as, restrict read access to the user file as necessary.

Set access controls

There are two more variables to set in the svnser ve. conf file: they determine what unauthenticated
(anonymous) and authenticated users are alowed to do. The variables anon- access and aut h-

access can be set to the valuesnone, r ead, or wr i t e. Setting the value to none restricts all access
of any kind; r ead allows read-only access to the repository, and wr i t e allows complete read/write ac-
cess to the repository. For example:

[general] .
password-db = userfile
real m= exanple realm

anonynous users can only read the repository
anon- access = read

aut henticated users can both read and wite
aut h-access = wite

The example settings are, in fact, the default values of the variables, should you forget to define them. If
you want to be even more conservative, you can block anonymous access completely:

[general] .
password-db = userfile
real m = exanple realm

anonynous users aren't all owed
anon- access = none

aut henticated users can both read and wite
aut h-access = wite

Notice that svnserve only understands “blanket” access control. A user either has universal read/write
access, universal read access, or no access. There is no detailed control over access to specific paths
within the repository. For many projects and sites, this level of access control is more than adequate.
However, if you need per-directory access control, you'll need to use Apache instead of svnserve as
YOur Server process.

SSH authentication and authorization

svnser ve's built-in authentication can be very handy, because it avoids the need to create real system ac-
counts. On the other hand, some administrators already have well-established SSH authentication frame-
worksin place. In these situations, al of the project's users aready have system accounts and the ability
to “SSH into” the server machine.

It's easy to use SSH in conjunction with svnserve. The client simply uses the svn+ssh:// URL
schemato connect:

93

Server Configuration

$ whoani
harry

$ svn list svn+ssh://host.exanpl e. com repos/ proj ect
harry@ost . exanpl e.com s password: *****

foo
bar
baz

What's happening here is that the Subversion client is invoking a local ssh process, connecting to
host . exanpl e. com authenticating as user har r y, then spawning a private svhserve process on the
remote machine, running as user 'harry'. The svhserve command is being invoked in tunnel mode (- t)
and all network protocol is being “tunneled” over the encrypted connection by ssh, the tunnel-agent.
svnserve is aware that it's running as user ‘harry’, and if the client performs a commit, the authenticated
username will be attributed as the author of the new revision.

When running over a tunnel, authorization is primarily controlled by operating system permissions to
the repository's database files; it's very much the same as if harry were accessing the repository directly
viaafile:/// URL. If multiple system users are going to be accessing the repository directly, you
may want to place them into a common group, and you'll need to be careful about umasks. (Be sure to
read the section called “ Supporting Multiple Repository Access Methods’.) But even in the case of tun-
neling, the svnser ve. conf file can still be used to block access, by simply setting aut h- access
= readoraut h-access = none.

Y ou'd think that the story of SSH tunneling would end here, but it doesn't. Subversion allows you to cre-
ate custom tunnel behaviors in your run-time conf i g file (see the section called “Runtime Configura-
tion Ared’.) For example, suppose you want to use RSH instead of SSH. Inthe[t unnel s] section of
your conf i g file, simply defineit like this:

[tunnel s]
rsh = rsh

And now, you can use this new tunnel definition by using a URL schema that matches the name of your
new variable: svn+rsh:// host/ pat h. When using the new URL schema, the Subversion client
will actually be running the command r sh host svnserve -t behind the scenes. If you include a username
in the URL (for example, svn+rsh: // user name@ost / pat h) the client will also include that in
its command (r sh user name@host svnserve -t.) But you can define new tunneling schemes to be much
more clever than that:

[tunnel s]
Joessh = $JOESSH /opt/alternate/ssh -p 29934

This example demonstrates a couple of things. First, it shows how to make the Subversion client launch
avery specific tunneling binary (the one located at / opt / al t er nat e/ ssh) with specific options. In
this case, accessing asvn+j oessh: // URL would invoke the particular SSH binary with- p 29934
as arguments—useful if you want the tunnel program to connect to a non-standard port.

Second, it shows how to define a custom environment variable that can override the name of the tunnel-
ing program. Setting the SVN_SSH environment variable is a convenient way to override the default
SSH tunnel agent. But if you need to have several different overrides for different servers, each perhaps
contacting a different port or passing a different set of options, you can use the mechanism demonstrated
in this example. Now if we were to set the JOESSH environment variable, its value would override the

94

Server Configuration

entire value of the tunnel variable—$JOESSH would be executed instead of / opt / al t er nat e/ ssh
-p 29934,

httpd, the Apache HTTP server

The Apache HTTP Server is a “heavy duty” network server that Subversion can leverage. Via a custom
module, httpd makes Subversion repositories available to clients via the WebDAV/DdltaVv protocol,
which is an extension to HTTP 1.1 (see ht t p: / / ww. webdav. or g/ for more information.) This
protocol takes the ubiquitous HTTP protocol that is core of the World Wide Web, and adds
writing—specifically, versioned writing—capabilities. The result is a standardized, robust system that is
conveniently packaged as part of the Apache 2.0 software, is supported by numerous operating systems
and thi rd—ggrty products, and which doesn't require network administrators to open up yet another cus-
tom port. = While an Apache-Subversion server has more features than svnserve, it's also a bit more
difficult to set up. With flexibility often comes more complexity.

Much of the following discussion includes references to Apache configuration directives. While some
examples are given of the use of these directives, describing them in full is outside the scope of this
chapter. The Apache team maintains excellent documentation, publicly available on their website at
http://httpd. apache. or g. For example, a general reference for the configuration directives is
locatedat ht t p: // htt pd. apache. org/ docs-2. 0/ nod/ di rectives. htnl .

Also, as you make changes to your Apache setup, it is likely that somewhere along the way a mistake
will be made. If you are not already familiar with Apache's logging subsystem, you should become
aware of it. In your ht t pd. conf file are directives that specify the on-disk locations of the access and
error logs generated by Apache (the Cust onlog and Err or Log directives, respectively). Subver-
sion's mod_dav_svn uses Apache's error logging interface as well. Y ou can always browse the contents
of those files for information that might reveal the source of a problem that is not clearly noticeable oth-
erwise.

Why Apache 2?

If you're a system administrator, it's very likely that you're already running the Apache web server and
have some prior experience with it. At the time of writing, Apache 1.3 is by far the most popular version
of Apache. The world has been somewhat slow to upgrade to the Apache 2.X series for various reasons:
some people fear change, especially changing something as critical as a web server. Other people de-
pend on plug-in modules that only work against the Apache 1.3 API, and are waiting for a 2.X port.
Whatever the reason, many people begin to worry when they first discover that Subversion's Apache
module is written specifically for the Apache 2 API.

The proper response to this problem is: don't worry about it. It's easy to run Apache 1.3 and Apache 2
side-by-side; simply install them to separate places, and use Apache 2 as a dedicated Subversion server
that runs on a port other than 80. Clients can access the repository by placing the port number into the
URL:

$ svn checkout http://host.exanpl e.com 7382/ repos/ proj ect

Prerequisites

To network your repository over HTTP, you basically need four components, available in two packages.
You'll need Apache httpd 2.0, the mod_dav DAV module that comes with it, Subversion, and the
mod_dav_svn filesystem provider module distributed with Subversion. Once you have all of those com-
ponents, the process of networking your repository isas simple as:

22They redlly hate doing tha.

95

Server Configuration

e getting httpd 2.0 up and running with the mod_dav module,

* ingtaling the mod_dav_svn plugin to mod_dav, which uses Subversion's libraries to access the
repository, and

» configuring your ht t pd. conf fileto export (or expose) the repository.

Y ou can accomplish the first two items either by compiling httpd and Subversion from source code, or
by installing pre-built binary packages of them on your system. For the most up-to-date information on
how to compile Subversion for use with the Apache HTTP Server, as well as how to compile and con-
figure Apache itself for this purpose, see the | NSTALL file in the top level of the Subversion source
code tree.

Basic Apache Configuration

Once you have al the necessary components installed on your system, al that remains is the configura-
tion of Apache viaitshtt pd. conf file. Instruct Apache to load the mod_dav_svn module using the
LoadModul e directive. This directive must precede any other Subversion-related configuration items.
If your Apache was installed using the default layout, your mod_dav_svn module should have been in-
stalled in the nodul es subdirectory of the Apache install location (often / usr/ | ocal / apache?2).
The LoadMbdul e directive has a simple syntax, mapping a named module to the location of a shared
library on disk:

LoadModul e dav_svn_nodul e nodul es/ nod_dav_svn. so

Note that if mod_dav was compiled as a shared object (instead of statically linked directly to the httpd
binary), you'll need a similar LoadMbdul e statement for it, too. Be sure that it comes before the
mod_dav_svn line:

LoadModul e dav_nodul e nmodul es/ nod_dav. so
LoadModul e dav_svn_nodul e nodul es/ nod_dav_svn. so

At alater location in your configuration file, you now need to tell Apache where you keep your Subver-
sion repository (or repositories). The Locat i on directive has an XML-like notation, starting with an
opening tag, and ending with a closing tag, with various other configuration directives in the middle.
The purpose of the Locat i on directive is to instruct Apache to do something special when handling
requests that are directed at a given URL or one of its children. In the case of Subversion, you want
Apache to simply hand off support for URLSs that point at versioned resources to the DAV layer. You
can instruct Apache to delegate the handling of all URLs whose path portions (the part of the URL that
follows the server's name and the optional port number) begin with/ r epos/ to aDAV provider whose
repository is located at / absol ut e/ pat h/ t o/ reposi tory using the following ht t pd. conf
syntax:

<Location /repos>

DAV svn

SVNPat h / absol ut e/ path/to/ repository
</ Locati on>

If you plan to support multiple Subversion repositories that will reside in the same parent directory on
your local disk, you can use an aternative directive, the SVNPar ent Pat h directive, to indicate that
common parent directory. For example, if you know you will be creating multiple Subversion reposito-
ries in a directory /usr/local/svn that would be accessed via URLs like

96

Server Configuration

http://ny.server.con svn/reposl, http://my.server.conlsvn/repos2, and so
on, you could usethe ht t pd. conf configuration syntax in the following example:

<Location /svn>
DAV svn

any "/svn/foo" URL will map to a repository /usr/local/svn/foo
SVNPar ent Pat h /usr/Il ocal /svn
</ Locati on>

Using the previous syntax, Apache will delegate the handling of all URLs whose path portions begin
with / svn/ to the Subversion DAV provider, which will then assume that any items in the directory
specified by the SVNPar ent Pat h directive are actually Subversion repositories. Thisis a particularly
convenient syntax in that, unlike the use of the SVNPat h directive, you don't have to restart Apache in
order to create and network new repositories.

Be sure that when you define your new Locat i on, it doesn't overlap with other exported Locations.
For example, if your main Docurrent Root to / www, do not export a Subversion repository in Lo-
<cation /ww/ repos>. If arequest comesin for the URI / ww/ r epos/ f 0o. ¢, Apache won't
know whether to look for a file r epos/f 0o. ¢ in the Docurent Root, or whether to delegate
mod_dav_svn to return f 00. ¢ from the Subversion repository.

Server Names and the COPY Request

Subversion makes use of the COPY request type to perform server-side copies of files and directories. As
part of the sanity checking done by the Apache modules, the source of the copy is expected to be located
on the same machine as the destination of the copy. To satisfy this requirement, you might need to tell
mod_dav the name you use as the hostname of your server. Generally, you can use the Ser ver Nane
directivein ht t pd. conf to accomplish this.

Server Name svn. exanpl e. com

If you are using Apache's virtual hosting support viathe NanmeVi r t ual Host directive, you may need
to usethe Ser ver Al i as directive to specify additional names that your server is known by. Again, re-
fer to the Apache documentation for full details.

At this stage, you should strongly consider the question of permissions. If you've been running Apache
for some time now as your regular web server, you probably already have a collection of content—web
pages, scripts and such. These items have already been configured with a set of permissions that allows
them to work with Apache, or more appropriately, that allows Apache to work with those files. Apache,
when used as a Subversion server, will also need the correct permissions to read and write to your Sub-
version repository. (See Servers and Permissions: A Word of Warning.)

You will need to determine a permission system setup that satisfies Subversion's requirements without
messing up any previously existing web page or script installations. This might mean changing the per-
missions on your Subversion repository to match those in use by other things that Apache serves for
you, or it could mean using the User and Gr oup directivesin ht t pd. conf to specify that Apache
should run as the user and group that owns your Subversion repository. There is no single correct way to
set up your permissions, and each administrator will have different reasons for doing things a certain
way. Just be aware that permission-related problems are perhaps the most common oversight when con-
figuring a Subversion repository for use with Apache.

Authentication Options

97

Server Configuration

At thispoint, if you configured ht t pd. conf to contain something like

<Location /svn>

DAV svn

SVNPar ent Path /usr/ | ocal /svn
</ Locati on>

...then your repository is “anonymously” accessible to the world. Until you configure some authentica-
tion and authorization policies, the Subversion repositories you make available via the Locat i on di-
rective will be generally accessible to everyone. In other words,

e anyone can use their Subversion client to checkout aworking copy of arepository URL (or any of its
subdirectories),

e anyone can interactively browse the repository's latest revision simply by pointing their web browser
to the repository URL, and

* anyone can commit to the repository.

Basic HTTP Authentication

The easiest way to authenticate an client is viathe HT TP Basic authentication mechanism, which simply
uses a username and password to verify that a user is who she says she is. Apache provides an htpasswd
utility for managing the list of acceptable usernames and passwords, those to whom you wish to grant
special access to your Subversion repository. Let's grant commit access to Sally and Harry. First, we
need to add them to the password file.

$ ### First tine: use -c to create the file

$ ### Use -mto use MD5 encryption of the password, which is nobre secure
$ htpasswd -cm/etc/svn-auth-file harry

New password: *****

Re-type new password: *****

Addi ng password for user harry

$ htpasswd /etc/svn-auth-file -msally

New password; ****x*x*

Re-type new password: ****x*x*

Addi ng password for user sally

Next, you need to add some more ht t pd. conf directivesinside your Locat i on block to tell Apache
what to do with your new password file. The Aut hType directive specifies the type of authentication
system to use. In this case, we want to specify the Basi ¢ authentication system. Aut hName is an arbi-
trary name that you give for the authentication domain. Most browsers will display this name in the pop-
up dialog box when the browser is querying the user for his name and password. Finally, use the Au-

t hUser Fi | e directive to specify the location of the password file you created using htpasswd.

After adding these three directives, your <Locat i on> block should look something like this:

<Location /svn>
DAV svn
SVNPar ent Pat h /usr/ | ocal / svn
Aut hType Basi c
Aut hName " Subversion repository”
Aut hUserFile /etc/svn-auth-file

98

Server Configuration

</ Locati on>

This <Locat i on> block is not yet complete, and will not do anything useful. It's merely telling
Apache that whenever authorization is required, Apache should harvest a username and password from
the Subversion client. What's missing here, however, are directives that tell Apache which sorts of client
requests require authorization. Wherever authorization is required, Apache will demand authentication
aswell. The simplest thing to do is protect al requests. Adding Requi re val i d-user tells Apache
that all requests require an authenticated user:

<Location /svn>
DAV svn
SVNPar ent Pat h /usr/ | ocal / svn
Aut hType Basi c
Aut hName " Subversion repository”
Aut hUserFile /etc/svn-auth-file
Require vali d-user

</ Locati on>

Be sure to read the next section (the section called “ Authorization Options’) for more detail on the Re-
qui r e directive and other ways to set authorization policies.

One word of warning: HTTP Basic Auth passwords pass in very nearly plain-text over the network, and
thus are extremely insecure. If you're worried about password snooping, it may be best to use some sort
of SSL encryption, so that clients authenticate viaht t ps: // instead of ht t p: / / ; at a bare minimum,
you can configure Apache to use a self-signed server certificate. 23 Consult Apache's documentation
(and OpenSSL documentation) about how to do that.

SSL Certificate Management

Businesses that need to expose their repositories for access outside the company firewall should be con-
scious of the possibility that unauthorized parties could be “sniffing” their network traffic. SSL makes
that kind of unwanted attention less likely to result in sensitive data leaks.

If a Subversion client is compiled to use OpenSSL, then it gains the ability to speak to an Apache server
viahtt ps:// URLs. The Neon library used by the Subversion client is not only able to verify server
certificates, but can also supply client certificates when challenged. When the client and server have ex-
changed SSL certificates and successfully authenticated one another, all further communication is en-
crypted via a session key.

It's beyond the scope of this book to describe how to generate client and server certificates, and how to
configure Apache to use them. Many other books, including Apache's own documentation, describe this
task. But what can be covered hereis how to manage server and client certificates from an ordinary Sub-
version client.

When speaking to Apache viaht t ps: //, a Subversion client can receive two different types of infor-
mation:

» aserver certificate

» ademand for aclient certificate

If the client receives a server certificate, it needs to verify that it trusts the certificate: is the server really
who it claims to be? The OpenSSL library does this by examining the signer of the server certificate, or
certifying authority (CA). If OpenSSL is unable to automatically trust the CA, or if some other problem

Bywhile self-signed server certificates are still vulnerable to a “man in the middle” attack, such an attack is still much more diffi-
cult for acasual observer to pull off, compared to sniffing unprotected passwords.

99

Server Configuration

occurs (such as an expired certificate or hostname mismatch), the Subversion commandline client will
ask you whether you want to trust the server certificate anyway:

$ svn list https://host.exanpl e.com repos/ project

Error validating server certificate for 'https://home. exanpl e. com 443" :

- The certificate is not issued by a trusted authority. Use the
fingerprint to validate the certificate manual | y!

Certificate information:

- Hostname: host.exanple.com

- Valid: fromJan 30 19:23:56 2004 GMI until Jan 30 19:23:56 2006 GMI

- lIssuer: CA exanple.com Sonetown, California, US

- Fingerprint: 7d:el:a9:34:33:39: ba: 6a: €9: a5: c4: 22: 98: 7b: 76: 5¢: 92: a0: 9c: 7b

(R)eject, accept (t)enmporarily or accept (p)ermanently?

This dialogue should look familiar; it's essentially the same question you've probably seen coming from
your web browser (which isjust another HTTP client like Subversion!). If you choose the (p)ermanent
option, the server certificate will be cached in your private run-time aut h/ areain just the same way
your username and password are cached (see the section called “ Client Credentials Caching”.) If cached,
Subversion will automatically remember to trust this certificate in future negotiations.

Your run-time ser ver s file also gives you the ability to make your Subversion client automatically
trust specific CAs, either globally or on a per-host basis. Simply set the ssl -aut hority-files
variable to a semicolon-separated list of PEM-encoded CA certificates:

[gl obal]
ssl-authority-files = /path/to/ CAcertl. pem/path/to/ CAcert2. pem

Many OpenSSL installations also have a pre-defined set of “default” CAs that are nearly universally
trusted. To make the Subversion client automatically trust these standard authorities, set the ssl -
trust - defaul t-cavariabletot r ue.

When talking to Apache, a Subversion client might also receive a challenge for a client certificate.
Apacheis asking the client to identify itself: isthe client really who it saysit is? If all goes correctly, the
Subversion client sends back a private certificate signed by a CA that Apache trusts. A client certificate
is usually stored on disk in encrypted format, protected by alocal password. When Subversion receives
this challenge, it will ask you for both a path to the certificate and the password which protectsiit:

$ svn list https://host.exanpl e.com repos/ project

Aut hentication realm https://host.exanple.com 443
Client certificate filenanme: /path/to/ny/cert.pl2
Passphrase for '/path/to/my/cert.pl2': *x**x*xx

Notice that the client certificate isa“pl2” file. To use a client certificate with Subversion, it must be in
PK CS#12 format, which is a portable standard. Most web browsers are already able to import and export
certificates in that format. Another option is to use the OpenSSL commandline tools to convert existing
certificates into PK CS#12.

Again, the runtime ser ver s file allows you to automate this challenge on a per-host basis. Either or
both pieces of information can be described in runtime variables:

[groups]

100

Server Configuration

exanpl ehost = host. exanpl e. com

[exanpl ehost]
ssl-client-cert-file = /path/to/ny/cert.pl2
ssl-client-cert-password = sonmepassword

Onceyouvesetthessl -client-cert-fileandssl-client-cert-password variableszihe
Subversion client can automatically respond to a client certificate challenge without prompting you.

Authorization Options

Blanket Access Control

The simplest form of access control is to authorize certain users for either read-only access to a reposi-
tory, or read/write access to a repository.

You can restrict access on al repository operations by adding the Requi r e val i d- user directiveto
your <Locat i on> block. Using our previous example, this would mean that only clients that claimed
to be either harry or sal | y, and which provided the correct password for their respective username,
would be allowed to do anything with the Subversion repository:

<Location /svn>
DAV svn
SVNPar ent Path /usr/ | ocal / svn

how to authenticate a user

Aut hType Basic

Aut hName " Subversi on repository”
Aut hUserFil e /path/to/users/file

only authenticated users may access the repository
Require vali d-user
</ Locati on>

Sometimes you don't need to run such a tight ship. For example, Subversion's own source code reposi-
tory at http: //svn. col | ab. net/repos/ svn alows anyone in the world to perform read-only
repository tasks (like checking out working copies and browsing the repository with aweb browser), but
restricts all write operations to authenticated users. To do this type of selective restriction, you can use
the Limt and Li m t Except configuration directives. Like the Locat i on directive, these blocks
have starting and ending tags, and you would nest them inside your <Locat i on> block.

The parameters present on the Li mi t and Li mi t Except directives are HTTP request types that are
affected by that block. For example, if you wanted to disallow all access to your repository except the
currently supported read-only operations, you would usethe Li nmi t Except directive, passing the GET,
PROPFI ND, OPTI ONS, and REPORT request type parameters. Then the previously mentioned Re-
qui re valid-user directive would be placed inside the <Li m t Except > block instead of just
insidethe<Locat i on> block.

<Location /svn>
DAV svn
SVNPar ent Pat h /usr/ | ocal / svn

how to authenticate a user

Aut hType Basi c

Aut hName " Subversion repository”
Aut hUser Fil e /path/to/users/file

ZMore security-conscious folk might not want to store the client certificate password in theruntime ser ver s file.

101

Server Configuration

For any operations other than these, require an authenticated user.
<Li m t Except GET PROPFI ND OPTI ONS REPORT>
Require vali d-user
</LimtExcept>
</ Locati on>

These are only a few simple examples. For more in-depth information about Apache access control and
the Requi r e directive, take alook at the Securi ty section of the Apache documentation's tutorials
collectionat htt p: // htt pd. apache. or g/ docs-2. 0/ m sc/tutorials.htm .

Per-Directory Access Control

It's possible to set up finer-grained permissions using a second Apache httpd module, mod_authz_svn.
This module grabs the various opague URLSs passing from client to server, asks mod_dav_svn to decode
them, and then possibly vetoes requests based on access policies defined in a configuration file.

If you've built Subversion from source code, mod_authz_svn is automatically built and installed along-
side mod_dav_svn. Many binary distributionsinstall it automatically aswell. To verify that it'sinstalled
correctly, make sure it comesright after mod_dav_svn's LoadMbdul e directivein ht t pd. conf:

LoadModul e dav_nodul e nmodul es/ nod_dav. so
LoadModul e dav_svn_nodul e nodul es/ nod_dav_svn. so
LoadModul e aut hz_svn_nodul e nodul es/ nod_aut hz_svn. so

To activate this module, you need to configure your Locat i on block to usethe Aut hzSVNAccess-
Fi | e directive, which specifies a file containing the permissions policy for paths within your reposito-
ries. (In amoment, we'll discuss the format of that file.)

Apache is flexible, so you have the option to configure your block in one of three general patterns. To
begin, choose one of these basic configuration patterns. (The examples below are very simple; look at
Apache's own documentation for much more detail on Apache authentication and authorization options.)

The simplest block is to allow open access to everyone. In this scenario, Apache never sends authentica-
tion challenges, so all users are treated as “anonymous’.

Example 6.1. A sample configuration for anonymous access.

<Location /repos>
DAV svn
SVNPar ent Pat h /usr/ Il ocal / svn

our access control policy
Aut hzSVNAccessFi |l e / path/to/ access/file
</ Locati on>

On the opposite end of the paranocia scale, you can configure your block to demand authentication from
everyone. All clients must supply credentials to identify themselves. Your block unconditionaly re-
quires authentication viathe Requi r e val i d- user directive, and defines a means to authenticate.

Example 6.2. A sample configuration for authenticated access.

102

Server Configuration

<Location /repos>
DAV svn
SVNPar ent Pat h /usr/ | ocal / svn

our access control policy
Aut hzSVNAccessFi |l e / path/to/access/file

only authenticated users may access the repository
Requi re vali d-user

how to authenticate a user

Aut hType Basi c

Aut hNanme " Subversion repository”

Aut hUserFil e /path/to/users/file
</ Locati on>

A third very popular pattern is to allow a combination of authenticated and anonymous access. For ex-
ample, many administrators want to allow anonymous users to read certain repository directories, but
want only authenticated users to read (or write) more sensitive areas. In this setup, all users start out ac-
cessing the repository anonymoudly. If your access control policy demands areal username at any point,
Apache will demand authentication from the client. To do this, you use both the Sati sfy Any and
Requi re val i d- user directivestogether.

Example 6.3. A sample configuration for mixed authenticated/anonymous access.

<Location /repos>
DAV svn
SVNPar ent Pat h /usr/ | ocal / svn

our access control policy
Aut hzSVNAccessFi |l e / path/to/access/file

try anonynous access first, resort to real
authentication if necessary.

Satisfy Any

Requi re val i d-user

how to authenticate a user

Aut hType Basi c

Aut hName " Subversion repository”

Aut hUserFil e /path/to/users/file
</ Locati on>

Once your basic Locat i on block is configured, you can create an access file and define some autho-
rization rulesinit.

The syntax of the access file is the same familiar one used by svnserve.conf and the runtime configura-
tion files. Lines that start with hash (#) are ignored. In its simplest form, each section names a repository
and path within it, and the authenticated usernames are the option names within each section. The value
of each option describes the user's level of access to the repository path: either r (read-only) or rw
(read-write). If the user is not mentioned at al, no accessis allowed.

103

Server Configuration

To be more specific: the value of the section-names are either of the form [r epos- nane: pat h] or
the form [pat h] . If you're using the SVNPar ent Pat h directive, then it's important to specify the
repository names in your sections. If you omit them, then a section like [/ some/ di r] will match the
path / sorre/ di r in every repository. If you're using the SVNPat h directive, however, then it's fine to
only define paths in your sections—after all, there's only one repository.

[cal c:/branches/ cal ¢/ bug-142]
harry = rw
sally =r

In this first example, user harry has full read and write access on the / br anches/ cal ¢/ bug- 142
directory in the cal ¢ repository, but user sal | y has read-only access. Any other users are blocked
from accessing this directory.

Of course, permissions “inherit” from parent to child directory. That means that we can specify a subdi-
rectory with a different access policy for sally:

[cal c:/branches/ cal c/ bug-142]
harry = rw

sally =r
give sally wite access only to the '"testing' subdir
[cal c:/branches/ cal c/ bug-142/testing]

sally = rw

Now sally can write to the t est i ng subdirectory of the branch, but can still only read other parts.
Harry, meanwhile, continues to have complete read-write access to the whole branch.

It's also possible to explicitly deny permission to someone viainheritance rules, by setting the username
variable to nothing:

[cal c:/branches/ cal c/ bug-142]
harry = rw

sally =r
[cal c:/branches/ cal ¢/ bug- 142/ secret]
harry =

In this example, harry has read-write access to the entire bug- 142 tree, but has absolutely no access at
all tothesecr et subdirectory withinit.

By default, nobody has any access to the repository at all. That means that if you're starting with an
empty file, you'll probably want to give at least read permission to all users at the root of the repository.
Y ou can do this by using the asterisk variable (*), which means “all users’:

fr—
~
In=—

This is a common setup; notice that there's no repository name mentioned in the section name. This
makes all repositories world readable to al users, whether youre using SVNPath or
SVNPar ent Pat h. Once al users have read-access to the repositor(ies), you can give explicit r w per-
mission to certain users on specific subdirectories within specific repositories.

104

Server Configuration

The asterisk variable (*) is also worth specia mention here: it's the only pattern which matches an
anonymous user. If you've configured your Locat i on block to allow a mixture of anonymous and au-
thenticated access, all users start out accessing Apache anonymously. mod_authz_svn looks for a *
value defined for the path being accessed; if it can't find one, then Apache demands real authentication
from the client.

The access file also allows you to define whole groups of users, much like the Unix / et ¢/ gr oup file:

[groups]

cal c-devel opers = harry, sally, joe

pai nt -devel opers = frank, sally, jane

everyone = harry, sally, joe, frank, sally, jane

Groups can be granted access control just like users. Distinguish them with an ampersane (@ prefix:
[cal c:/projects/calc]

al c-devel opers = rw
[pai nt:/projects/paint]

a
@ai nt -devel opers = rw
ane =r

—

...and that's pretty much all thereisto it.

Extra Goodies

Repository Browsing

One of the most useful benefits of an Apache/WebDAV configuration for your Subversion repository is
that the youngest revisions of your versioned files and directories are immediately available for viewing
via a regular web browser. Since Subversion uses URLSs to identify versioned resources, those URLS
used for HTTP-based repository access can be typed directly into a Web browser. Y our browser will is-
sue a GET request for that URL, and based on whether that URL represents a versioned directory or file,
mod_dav_svn will respond with adirectory listing or with file contents.

Since the URLs do not contain any information about which version of the resource you wish to see,
mod_dav_svn will always answer with the youngest version. This functionality has the wonderful side-
effect that you can pass around Subversion URLSs to your peers as references to documents, and those
URLs will always point at the latest manifestation of that document. Of course, you can even use the
URLs as hyperlinks from other web sites, too.

You generally will get more use out of URLS to versioned files—after all, that's where the interesting
content tends to lie. But you might have occasion to browse a Subversion directory listing, where you'll
quickly note that the generated HTML used to display that listing is very basic, and certainly not in-
tended to be aesthetically pleasing (or even interesting). To enable customization of these directory dis-
plays, Subversion provides an XML index feature. A single SVYNI ndexXSLT directive in your reposi-
tory's Locat i on block of htt pd. conf will instruct mod _dav_svn to generate XML output when
displaying a directory listing, and to reference the XSLT stylesheet of your choice:

<Location /svn>
DAV svn
SVNPar ent Path /usr/ | ocal / svn
SVNI ndexXSLT "/ svni ndex. xsl "

105

Server Configuration

</ Locati on>

Using the SVNI ndex XSLT directive and a creative XSLT stylesheet, you can make your directory list-
ings match the color schemes and imagery used in other parts of your website. Or, if you'd prefer, you
can use the sample stylesheets provided in the Subversion source distribution's t ool s/ xsl t/ direc-
tory. Keep in mind that the path provided to the SVNI ndexXSLT directory is actualy a URL
path—browsers need to be able to read your stylesheetsin order to make use of them!

Can | view older revisions?
With an ordinary web browser? In one word: nope. At least, not with mod_dav_svn as your only tool.

Your web browser only speaks ordinary HTTP. That means it only knows how to GET public URLS,
which represent the latest versions of files and directories. According to the WebDAV/DeltaV spec,
each server defines a private URL syntax for older versions of resources, and that syntax is opaque to
clients. To find an older version of afile, a client must follow a specific procedure to “discover” the
proper URL; the procedure involves issuing a series of WebDAYV PROPFIND requests and understand-
ing DeltaV concepts. Thisis something your web browser simply can't do.

So to answer the question, one obvious way to see older revisions of files and directories is by passing
the - - r evi si on argument to the svn list and svn cat commands. To browse old revisions with your
web browser, however, you can use third-party software. A good example of this is ViewCVS
(htt p: //vi ewcvs. sour cef orge. net/). ViewCVS was originally written to display CVS
repositories through the web, and the latest bleeding-edge versions (at the time of writing) are able to
understand Subversion repositories as well.

Other Features

Severa of the features aready provided by Apache in its role as a robust Web server can be leveraged
for increased functionality or security in Subversion as well. Subversion communicates with Apache us-
ing Neon, which isageneric HTTP/WebDAYV library with support for such mechanisms as SSL (the Se-
cure Socket Layer, discussed earlier) and Deflate compression (the same a gorithm used by the gzip and
PKZIP programs to “shrink” files into smaller chunks of data). Y ou need only to compile support for
the features you desire into Subversion and Apache, and properly configure the programs to use those
features.

Deflate compression places a small burden on the client and server to compress and decompress network
transmissions as a way to minimize the size of the actual transmission. In cases where network band-
width is in short supply, this kind of compression can greatly increase the speed at which communica-
tions between server and client can be sent. In extreme cases, this minimized network transmission
could be the difference between an operation timing out or completing successfully.

Less interesting, but equally useful, are other features of the Apache and Subversion relationship, such
as the ability to specify a custom port (instead of the default HTTP port 80) or a virtual domain name by
which the Subversion repository should be accessed, or the ability to access the repository through a
proxy. These things are all supported by Neon, so Subversion gets that support for free.

Finally, because mod_dav_svn is speaking a semi-complete dialect of WebDAV/DeltaV, it's possible to
access the repository via third-party DAV clients. Most modern operating systems (Win32, OS X, and

Linux) have the built-in ability to mount a DAV server as a standard network “share’. Thisis a compli-
cated topic; for details, read Appendix C, WebDAV and Autoversioning.

Supporting Multiple Repository Access Meth-
ods

106

Server Configuration

You've seen how arepository can be accessed in many different ways. But is it possible—or safe—for
your repository to be accessed by multiple methods simultaneously? The answer is yes, provided you
use a bit of foresight.

At any given time, these processes may require read and write access to your repository:

e regular system users using a Subversion client (as themselves) to access the repository directly via
file:/// URLs

* regular system users connecting to SSH-spawned private svnserve processes (running as them-
selves) which access the repository;

* ansvnserve process—either adaemon or one launched by inetd—running as a particular fixed user;

» an Apache httpd process, running as a particular fixed user.

The most common problem administrators run into is repository ownership and permissions. Does every
process (or user) in the previous list have the rights to read and write the Berkeley DB files? Assuming
you have a Unix-like operating system, a straightforward approach might be to place every potential
repository user into a new svn group, and make the repository wholly owned by that group. But even
that's not enough, because a process may write to the database files using an unfriendly umask—one that
prevents access by other users.

So the next step beyond setting up a common group for repository users is to force every repository-ac-
cessing process to use a sane umask. For users accessing the repository directly, you can make the svn
program into a wrapper script that first sets umask 002 and then runs the real svn client program. Y ou
can write a similar wrapper script for the svnserve program, and add a umask 002 command to
Apache's own startup script, apachect | . For example:

$ cat /usr/local/bin/svn
#!/ bin/ sh

umask 002
[usr/ | ocal / subversion/bin/svn "$@

Another common problem is often encountered on Unix-like systems. As a repository is used, Berke-
leyDB occasionally creates new logfiles to journal its actions. Even if the repository is wholly owned by
the svn group, these newly created files won't necessarily be owned by that same group, which then cre-
ates more permissions problems for your users. A good workaround is to set the group SUID bit on the
repository's db directory. This causes al newly-created logfiles to have the same group owner as the
parent directory.

Once you've jumped through these hoops, your repository should be accessible by all the necessary pro-
cesses. It may seem a bit messy and complicated, but the problems of having multiple users sharing
write-access to common files are classic ones that are not often elegantly solved.

Fortunately, most repository administrators will never need to have such a complex configuration. Users
who wish to access repositories that live on the same machine are not limited tousingfi | e: // access
URLs—they can typically contact the Apache HTTP server or svnserve using | ocal host for the
server name in their htt p: // or svn:// URLs. And to maintain multiple server processes for your
Subversion repositories is likely to be more of a headache than necessary. We recommend you choose
the server that best meets your needs and stick with it!

107

Server Configuration

The svn+ssh:// server checklist

It can be quite tricky to get a bunch of users with existing SSH accounts to share a repository without
permissions problems. If you're confused about all the things that you (as an admininstrator) need to do
on a Unix-like system, here's a quick checklist that resummarizes some of things discussed in this sec-
tion:

» All of your SSH users need to be able to read and write to the repository. Put all the SSH usersinto a
single group. Make the repository wholly owned by that group, and set the group permissions to
read/write.

* Your users need to use a sane umask when accessing the repository. Make sure that svnserve /
(usr /1 ocal / bi n/ svnser ve, or wherever it livesin $PATH) is actually a wrapper script which
sets umask 002 and executes the real svnserve binary.

» When BerkeleyDB creates new logfiles, they need to be owned by the group as well, so make sure
you run chmod g+s on the repository's db directory.

108

Chapter 7. Advanced Topics

If you've been reading this book chapter by chapter, from start to finish, you should by now have ac-
quired enough knowledge to use the Subversion client to perform the most common version control op-
erations. Y ou understand how to checkout a working copy from a Subversion repository. Y ou are com-
fortable with submitting and receiving changes using the svn commit and svn update functions. Y ou've
probably even developed a reflex which causes you to run the svn status command almost uncon-
scioudly. For all intents and purposes, you are ready to use Subversion in atypical environment.

But the Subversion feature set doesn't stop at “common version control operations’.

This chapter highlights some of Subversion's features that aren't quite so regularly used. In it, we will
discuss Subversion's property (or “metadata’) support, and how to modify Subversion's default behav-
iors by tweaking its run-time configuration area. We will describe how you can use externals definitions
to instruct Subversion to pull data from multiple repositories. We'll cover in detail some of the additional
client- and server-side tools that are part of the Subversion distribution.

Before reading this chapter, you should be familiar with the basic file and directory versioning capabili-
ties of Subversion. If you haven't already read about those, or if you need a refresher, we recommend
that you check out Chapter 2, Basic Concepts and Chapter 3, Guided Tour. Once you've masteregsthe
basics and consumed this chapter, you'll be a Subversion power-user—or we'll refund your money!

Runtime Configuration Area

Subversion provides many optional behaviors that can be controlled by the user. Many of these options
are of the kind that a user would wish to apply to all Subversion operations. So, rather than forcing users
to remember command-line arguments for specifying these options, and to use them for each and every
operation they perform, Subversion uses configuration files, segregated into a Subversion configuration
area.

The Subversion configuration area is a two-tiered hierarchy of option names and their values. Usualy,
this boils down to a special directory that contains configuration files (the first tier), which are just text
filesin standard INI format (with “sections’ providing the second tier). These files can be easily edited
using your favorite text editor (such as Emacs or vi), and contain directives read by the client to deter-
mine which of several optional behaviors the user prefers.

Configuration Area Layout

The first time that the svn command-line client is executed, it creates a per-user configuration area. On
Unix-like systems, this area appears as a directory named . subver si on in the user's home directory.
On Win32 systems, Subversion creates a folder named Subver si on, typicaly insidethe Appl i ca-

ti on Dat a areaof the user's profile directory (which, by the way, is usually a hidden directory). How-
ever, on this platform the exact location differs from system to system, and is dictated by the Windows
registry. <~ We will refer to the per-user configuration area using its Unix name, . subver si on.

In addition to the per-user configuration area, Subversion also recognizes the existence of a system-wide
configuration area. This gives system administrators the ability to establish defaults for al users on a
given machine. Note that the system-wide configuration area does not alone dictate mandatory
policy—the settings in the per-user configuration area override those in the system-wide one, and com-
mand-line arguments supplied to the svn program have the final word on behavior. On Unix-like plat-
forms, the system-wide configuration area is expected to be the / et ¢/ subver si on directory; on
Windows machines, it again looks for a Subver si on directory inside the common Application Data

Brhis offer applies only to those who, like most folks, pay nothing for Subversion.
he APPDATA environment variable points to the Appl i cati on Dat a area, so you can aways refer to this folder as
Y%APPDATA% Subver si on.

109

Advanced Topics

location (again, as specified by the Windows Registry). Unlike the per-user case, the svn program does
not attempt to create the system-wide configuration area.

The configuration area currently contains three files—two configuration files (conf i g and ser ver s),
and a README. t xt file which describes the INI format. At the time of their creation, the files contain
default values for each of the supported Subversion options, mostly commented out and grouped with
textual descriptions about how the values for the key affect Subversion's behavior. To change a certain
behavior, you need only to load the appropriate configuration file into a text editor, and modify the de-
sired option's value. If at any time you wish to have the default configuration settings restored, you can
simply remove (or rename) your configuration directory, and then run some innocuous svn command,
such as svn --version. A new configuration directory with the default contents will be created.

The per-user configuration area also contains a cache of authentication data. The aut h directory holds a
set of subdirectories that contain pieces of cached information used by Subversion's various supported
authentication methods. This directory is created in such away that only the user herself has permission
to read its contents.

Configuration and the Windows Registry

In addition to the usual INI-based configuration area, Subversion clients running on Windows platforms
may also use the Windows registry to hold the configuration data. The option names and their values are
the same as in the INI files. The “file/section” hierarchy is preserved as well, though addressed in a
dightly different fashion—in this schema, files and sections are just levelsin the registry key tree.

Subversion looks for system-wide configuration values under the
HKEY LOCAL_MACHI NE\ Sof t war e\ Ti gri s. org\ Subversi on key. For example, the
gl obal -i gnor es option, whichisintheni scel | any section of the conf i g file, would be found

at
HKEY_LOCAL_MACHI NE\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ M scel | any\ gl
obal -i gnores. Per-user configuration values should be stored under

HKEY_CURRENT_USER\ Sof t war e\ Ti gri s. or g\ Subver si on.

Registry-based configuration options are parsed before their file-based counterparts, so are overridden
by values found in the configuration files. In other words, configuration priority is granted in the follow-
ing order on a Windows system:

1. Command-line options

The per-user INI files

The per-user Registry values

A WD

The system-wide INI files

5. The system-wide Registry values

Also, the Windows Registry doesn't really support the notion of something being “commented out”.
However, Subversion will ignore any option key whose name begins with a hash (#) character. This al-
lows you to effectively comment out a Subversion option without deleting the entire key from the Reg-
istry, obviously simplifying the process of restoring that option.

The svn command-line client never attempts to write to the Windows Registry, and will not attempt to
create a default configuration area there. You can create the keys you need using the REGEDIT pro-
gram. Alternatively, you can create a . r eg file, and then double-click on that file from the Explorer
shell, which will cause the data to be merged into your registry.

110

Advanced Topics

Example 7.1. Sample Registration Entries (.reg) File.

REGEDI T4
[HKEY_LOCAL_MACHI NE\ Sof t war e\ Ti gri s. or g\ Subver si on\ Ser ver s\ gr oups]

[HKEY_LOCAL N%CHINE\Softmare\Tigris.org\Subversion\Servers\gIobaH
"#http- proxy-host"=""

"#htt p- proxy-port"
"#http-proxy—usernanE"
"#ht t p- pr oxy- password"
"#htt p- proxy-exceptions" =
"#htt p-ti meout"="0"
"#http-conpression":"yes"
"#neon- debug- mask"=""
"#ssl-authority- f|Ies
"#ssl-trust-default-ca"=
"#ssl-client-cert- f|Ie
"#ssl-client-cert-password"=

[HKEY_CURRENT_USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ aut h]
"#st ore-aut h-creds"="no"

[HKEY_ CURRENT _USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ hel per s]
"#edi t or - cnd" =" not epad”
"HAiff-cmd"=""

"#di ff3-cmd"=""

"#di f f 3- has- program arg"=""

[HKEY_CURRENT_USER\ Sof twar e\ Ti gri s. org\SubverS|on\Cbnflg\n1sceIIany]
"#global-lgnores"—"* o *.lo *.la## .*.rej *.rej .*~ *~ _#*

" #| og- encodi ng"=""
"#use-commit-tines"=
"#t enpl ate-root"=""
"#enabl e- aut o- props" =

[HKEY_CURRENT _USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\t unnel s]
[HKEY_CURRENT _USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ aut o- pr ops]

The previous example shows the contents of a . r eg file which contains some of the most commonly
used configuration options and their default values. Note the presence of both system-wide (for network
proxy-related options) and per-user settings (editor programs and password storage, among others). Also
note that all the options are effectively commented out. Y ou need only to remove the hash (#) character
from the beginning of the option names, and set the values as you desire.

Configuration Options

In this section, we will discuss the specific run-time configuration options that are currently supported
by Subversion.

Servers

The ser ver s file contains Subversion configuration options related to the network layers. There are
two special section names in this file—gr oups and gl obal . The gr oups section is essentially a
cross-reference table. The keysin this section are the names of other sections in the file; their values are

111

Advanced Topics

globs—textual tokens which possibly contain wildcard characters—that are compared against the host-
names of the machine to which Subversion requests are sent.

[groups]
beani e- babi es = *.red-bean. com
col | abnet = svn. col | ab. net

[beani e- babi es]

[col | abnet]

When Subversion is used over a network, it attempts to match the name of the server it is trying to reach
with a group name under the gr oups section. If amatch is made, Subversion then looks for a section in
the ser ver s file whose name is the matched group's name. From that section it reads the actual net-
work configuration settings.

The gl obal section contains the settings that are meant for all of the servers not matched by one of the
globs under the gr oups section. The options available in this section are exactly the same as those
valid for the other server sections in the file (except, of course, the special gr oups section), and are as
follows:

ht t p- pr oxy- host
This specifies the hostname of the proxy computer through which your HTTP-based Subversion re-
guests must pass. It defaults to an empty value, which means that Subversion will not attempt to
route HTTP requests through a proxy computer, and will instead attempt to contact the destination
machine directly.

htt p- pr oxy- port
This specifies the port number on the proxy host to use. It defaults to an empty value.

ht t p- pr oxy- user nane
This specifies the username to supply to the proxy machine. It defaults to an empty value.

ht t p- pr oxy- passwor d
This specifies the password to supply to the proxy machine. It defaults to an empty value.

http-ti neout
This specifies the amount of time, in seconds, to wait for a server response. If you experience prob-
lems with a slow network connection causing Subversion operations to timeout, you should increase
the value of this option. The default value is O, which instructs the underlying HTTP library, Neon,
to use its default timeout setting.

ht t p- conpr essi on
This specifies whether or not Subversion should attempt to compress network reguests made to
DAV -ready servers. The default valueisyes (though compression will only occur if that capability
is compiled into the network layer). Set this to no to disable compression, such as when debugging
network transmissions.

neon- debug- mask
Thisis an integer mask that the underlying HTTP library, Neon, uses for choosing what type of de-
bugging output to yield. The default value is 0, which will silence all debugging output. For more
information about how Subversion makes use of Neon, see Chapter 8, Developer Information.

ssl-authority-files
A semi-colon delimited list of paths to files containing certificates of the certificate authorities (or
CAs) that are accepted by the Subversion client when accessing the repository over HTTPS.

112

Config

Advanced Topics

ssl-trust-default-ca
Set this variable to yes if you want Subversion to automatically trust the set of default CAs that
ship with OpenSSL.

ssl-client-cert-file
If host (or set of hosts) requries an SSL client certificate, you'll normally be prompted for a path to
your certificate. By setting this variable to that same path, Subversion will be able to find your
client certificate automatically without prompting you. There's no standard place to store your cer-
tificate on disk; Subversion will grab it from any path you specify.

ssl-client-cert-password
If your SSL client certificate file is encrypted by a passphrase, Subversion will prompt you for the
passphrase whenever the certificate is used. If you find this annoying (and don't mind storing the
password in the ser ver s file), then you can set this variable to the certificate's passphrase. Y ou
won't be prompted anymore.

The confi g file contains the rest of the currently available Subversion run-time options, those not re-
lated to networking. There are only afew options in use at thistime, but they are again grouped into sec-
tions in expectation of future additions.

The aut h section contains settings related to Subversion's authentication and authorization against the
repository. It contains:

st ore-aut h-creds
This instructs Subversion to cache, or not to cache, authentication credentials that are supplied by
the user in response to server authentication challenges. The default value isyes. Set thisto no to
disable this on-disk credential caching. Y ou can override this option for a single instance of the svn
command using the - - no- aut h- cache command-line parameter (for those subcommands that
support it). For more information, see the section called “Client Credentials Caching”.

The hel per s section controls which external applications Subversion uses to accomplish its tasks.
Valid optionsin this section are:

edi tor-cnd

This specifies the program Subversion will use to query the user for alog message during a commit
operation, such as when using svn commit without either the - - nessage (-mor--file (-F)
options. This program is aso used with the svn propedit command—a temporary file is popul ated
with the current value of the property the user wishes to edit, and the edits take place right in the ed-
itor program (see the section called “Properties’). This option's default value is empty. If the option
is not set, Subversion will fall back to checking the environment variables SVN _EDI TOR,
VI SUAL, and EDI TOR (in that order) for an editor command.

diff-cnd
This specifies the absolute path of a differencing program, used when Subversion generates “diff”
output (such as when using the svn diff command). By default Subversion uses an internal differ-
encing library—setting this option will cause it to perform this task using an external program.

di ff3-cnd
This specifies the absolute path of athree-way differencing program. Subversion uses this program
to merge changes made by the user with those received from the repository. By default Subversion
uses an internal differencing library—setting this option will cause it to perform this task using an
external program.

113

Advanced Topics

di f f 3- has- program arg
This flag should be set to t r ue if the program specified by the di f f 3- cnd option accepts a -
- di f f - pr ogr amcommand-line parameter.

The t unnel s section allows you to define new tunnel schemes for use with svnserve and svn: //
client connections. For more details, see the section called “ SSH authentication and authorization”.

The mi scel | any section is where everything that doesn't belong elsewhere winds up. 27 |n this sec-
tion, you can find:

gl obal -i gnores

When running the svn status command, Subversion lists unversioned files and directories along
with the versioned ones, annotating them with a ? character (see the section called “svn status’).
Sometimes, it can be annoying to see uninteresting, unversioned items—for example, object files
that result from a program's compilation—in this display. The gl obal - i gnor es option is alist
of whitespace-delimited globs which describe the names of files and directories that Subversion
should not display unless they are versioned. The default valueis *. 0 *.lo *.la #*#
Lrorej *urej L f~ Y~ O f*

You can override this option for a single instance of the svn status command by using the -
- no- i gnor e command-line flag. For information on more fine-grained control of ignored items,
see the section called “svn:ignore”.

enabl e- aut o- pr ops
This instructs Subversion to automatically set properties on newly added or imported files. The de-
fault valueisno, so set thisto yes to enable Auto-props.

The aut o- pr ops section controls the Subversion client's ability to automatically set properties on
files when they are added or imported. It contains any number of key-value pairs in the format
REGEX = PROPNAME=PROPVALUE where REGEX is a regular expression that matches a set of
filenames and the rest of the line is the property and its value. Multiple matches on afile will result
in multiple propsets for that file; however, there is no guarantee that auto-props will be applied in
the order in which they are listed in the config file, so you can't have one rule “override” another.
You can find several examples of auto-props usage in the confi g file. Lastly, don't forget to set
enabl e- aut o- pr ops toyes if you want to enable auto-props.

| og- encodi ng
This variable sets the default character set encoding for commit log messages. It's a permanent form
of the - - encodi ng option (see the section called “svn Switches’.) The Subversion repository
stores log messages in UTF8, and assumes that your log message is written using your operating
system's native locale. Y ou should specify a different encoding if your commit messages are written
in any other encoding.

use-conmit-times
Normally your working copy files have timestamps that reflect the last time they were touched by
any process, whether that be your own editor or by some svn subcommand. Thisis generally conve-
nient for people developing software, because build systems often look at timestamps as a way of
deciding which files need to be recompiled.

In other situations, however, it's sometimes nice for the working copy files to have timestamps that
reflect the last time they were changed in the repository. The svn export command always places
these “last-commit timestamps’ on trees that it produces. By setting this config variable to yes, the
svn checkout, svn update, svn switch, and svn revert commands will also set last-commit times-
tamps on files that they touch.

27Anyone for potluck dinner?

114

Advanced Topics

Properties

We've aready covered in detail how Subversion stores and retrieves various versions of files and direc-
tories in its repository. Whole chapters have been devoted to this most fundamental piece of functional-
ity provided by the tool. And if the versioning support stopped there, Subversion would still be complete
from aversion control perspective. But it doesn't stop there.

In addition to versioning your directories and files, Subversion provides interfaces for adding, modify-
ing, and removing versioned metadata on each of your versioned directories and files. We refer to this
metadata as properties, and they can be thought of as two-column tables that map property names to ar-
bitrary values attached to each item in your working copy. Generally speaking, the names and values of
the properties can be whatever you want them to be, with the constraint that the names must be human-
readable text. And the best part about these propertiesis that they, too, are versioned, just like the textual
contents of your files. You can modify, commit, and revert property changes as easily as committing
textual changes. And you receive other peopl€e's property changes as you update your working copy.

Other Propertiesin Subversion

Properties show up elsewhere in Subversion, too. Just as files and directories may have arbitrary prop-
erty names and values attached to them, each revision as a whole may have arbitrary properties attached
to it. The same constraints apply—human-readable, text names and anything-you-want, binary
values—except that revision properties are not versioned. See the section called “Unversioned Proper-
ties” for more information on these unversioned properties.

In this section, we will examine the utility—both to users of Subversion, and to Subversion itself—of
property support. You'll learn about the property-related svn subcommands, and how property modifica-
tions affect your normal Subversion workflow. Hopefully, you'll be convinced that Subversion proper-
ties can enhance your version control experience.

Why Properties?

Properties can be very useful additions to your working copy. In fact, Subversion itself uses propertiesto
house special information, and as a way to denote that certain special processing might be needed. Like-
wise, you can use properties for your own purposes. Of course, anything you can do with properties you
could also do using regular versioned files, but consider the following example of Subversion property
use.

Say you wish to design awebsite that houses many digital photos, and displays them with captions and a
datestamp. Now, your set of photos is constantly changing, so you'd like to have as much of this site
automated as possible. These photos can be quite large, so as is common with sites of this nature, you
want to provide smaller thumbnail images to your site visitors. You can do this with traditiona files.
That is, you can have your i magel123. j pg and ani magel23-t hunbnail . j pg side-by-sidein a
directory. Or if you want to keep the filenames the same, you might have your thumbnails in a different
directory, liket hunbnai | s/ i magel23. j pg. You can aso store your captions and datestamps in a
similar fashion, again separated from the origina image file. Soon, your tree of files is a mess, and
grows in multiples with each new photo added to the site.

Now consider the same setup using Subversion's file properties. Imagine having asingleimagefile, i m

agel23. j pg, and then properties set on that file named capt i on, dat est anp, and even t hunb-

nai | . Now your working copy directory looks much more manageable—in fact, it looks like there are
nothing but image files in it. But your automation scripts know better. They know that they can use svn
(or better yet, they can use the Subversion language bindings—see the section called “Using Languages
Other than C and C++") to dig out the extrainformation that your site needs to display without having to
read an index file or play path manipulation games.

115

Advanced Topics

How (and if) you use Subversion properties is up to you. As we mentioned, Subversion has it own uses
for properties, which we'll discuss a little later in this chapter. But first, let's discuss how to manipulate
options using the svn program.

Manipulating Properties

The svn command affords a few ways to add or modify file and directory properties. For properties with
short, human-readable values, perhaps the simplest way to add a new property is to specify the property
name and value on the command-line of the propset subcommand.

$ svn propset copyright '(c) 2003 Red-Bean Software' calc/button.c
groperty ‘copyright' set on 'calc/button.c'

But we've been touting the flexibility that Subversion offers for your property values. And if you are
planning to have a multi-line textual, or even binary, property value, you probably do not want to supply
that value on the command-line. So the propset subcommand takesa--fi | e (- F) option for specify-
ing the name of afile which contains the new property value.

$ svn propset license -F /path/to/LlI CENSE cal c/button.c
property 'license' set on 'calc/button.c’
$

In addition to the propset command, the svn program supplies the propedit command. This command
uses the configured editor program (see the section called “ Config”) to add or modify properties. When
you run the command, svn invokes your editor program on a temporary file that contains the current
value of the property (or which is empty, if you are adding a new property). Then, you just modify that
value in your editor program until it represents the new value you wish to store for the property, save the
temporary file, and then exit the editor program. If Subversion detects that you've actually changed the
existing value of the property, it will accept that as the new property value. If you exit your editor with-
out making any changes, no property modification will occur.

$ svn propedit copyright calc/button.c ### exit the editor wthout changes
No changes to property 'copyright' on 'calc/button.c'

We should note that, as with other svn subcommands, those related to properties can act on multiple
paths at once. This enables you to modify properties on whole sets of files with a single command. For
example, we could have done:

$ svn propset copyright '(c) 2002 Red-Bean Software' calc/*
property 'copyright' set on 'cal c/Makefile'

property 'copyright' set on 'cal c/button.c'

property 'copyright' set on 'calc/integer.c'

$

All of this property adding and editing isn't really very useful if you can't easily get the stored property
value. So the svn program supplies two subcommands for displaying the names and values of properties
stored on files and directories. The svn proplist command will list the names of properties that exist on
apath. Once you know the names of the properties on the node, you can request their values individually
using svn propget. This command will, given a path (or set of paths) and a property name, print the

116

Advanced Topics

value of the property to the standard output stream.

$ svn proplist calc/button.c
Properties on 'cal c/button.c'

copyri ght

i cense
$ svn propget copyright calc/button.c
(c) 2003 Red-Bean Sof tware

There's even a variation of the proplist command that will list both the name and value of al of the
properties. Simply supply the - - ver bose (- v) option.

$ svn proplist --verbose calc/button.c
Properties on 'calc/button.c':

copyright : (c) 2003 Red-Bean Software

I | Cense e s s s e ——
Copyright (c) 2003 Red-Bean Software. All rights reserved.

Redi stri bution and use in source and binary forns, with or without
nodi fication, are permtted provided that the follow ng conditions
are net:

1. Redistributions of source code nmust retain the above copyri ght
notice, this list of conditions, and the recipe for Fitz's fanous
red- beans-and-ri ce.

The last property-related subcommand is propdel. Since Subversion allows you to store properties with
empty values, you can't remove a property altogether using propedit or propset. For example, this com-
mand will not yield the desired effect:

$ svn propset |icense calc/button.c
property 'license' set on 'calc/button.c'
$ svn proplist --verbose calc/button.c
Properties on 'calc/button.c':

copyright : (c) 2003 Red-Bean Software
s i cense :

Y ou need to use the propdel command to delete properties altogether. The syntax is similar to the other
property commands:

$ svn propdel license calc/button.c
property 'license' deleted from'"'.
$ svn proplist --verbose cal c/button.c
Properties on 'cal c/button.c'

copyright : (c) 2003 Red-Bean Software

Now that you are familiar with al of the property-related svn subcommands, let's see how property
modifications affect the usual Subversion workflow. As we mentioned earlier, file and directory proper-
ties are versioned, just like your file contents. As a result, Subversion provides the same opportunities
for merging—in cleanly or conflicting fashions—someone el se's modifications into your own.

117

Advanced Topics

M odifying Revision Properties

Remember those unversioned revision properties? You can modify those, too, with the svn program.
Simply add the - - r evpr op command-line parameter, and specify the revision whose property you
wish to modify. Since revisions are global, you don't need to specify a path in this case as long as you
are positioned in the working copy of the repository whose revision property you wésh to modify. For
example, you might want to replace the commit log message of an existing revision. 2

$ svn propset svn:log '* button.c: Fix a conpiler warning.' -r1l --revpr
property 'svn:log' set on repository revision '11'
$

Note that the ability to modify these unversioned properties must be explicitly added by the repository
administrator (see the section called “Hook Scripts’). Since the properties aren't versioned, you run the
risk of losing information if you aren't careful with your edits. The repository administrator can setup
methods to protect against this lossage, but by default, modification of unversioned properties is dis-
abled.

And as with file contents, your property changes are local modifications, only made permanent when
you commit them to the repository with svn commit. Your property changes can be easily unmade,
too—the svn revert command will restore your files and directories to their un-edited states, contents,
properties, and all. Also, you can receive interesting information about the state of your file and direc-
tory properties by using the svn status and svn diff commands.

$ svn status cal c/button.c
M cal c/button.c
$ svn diff calc/button.c
Property changes on: calc/button.c

Nane: copyri ght
+ (c) 2003 Red- Bean Sof tware

Notice how the status subcommand displays Min the second column instead of the first. That is because
we have modified the properties on cal ¢/ but t on. ¢, but not modified its textual contents. Had we
changed both, we would have seen Min the first column, too (see the section called “svn status’).

Property Conflicts

As with file contents, local property modifications can conflict with changes committed by someone
else. If you update your working copy directory and receive property changes on a versioned resource
that clash with your own, Subversion will report that the resourceis in a conflicted state.

% svn update cal c

M cal c/ Makefile.in

C calc/button.c

gpdat ed to revision 143.

28Fixing spelling errors, grammatical gotchas, and “just-plain-wrongness’ in commit log messages is perhaps the most common
use-case for the- - r evpr op option.

118

Advanced Topics

Subversion will also create, in the same directory as the conflicted resource, afile with a. pr ej exten-
sion which contains the details of the conflict. You should examine the contents of this file so you can
decide how to resolve the conflict. Until the conflict is resolved, you will see a Cin the second column
of svn status output for that resource, and attempts to commit your local modifications will fail.

$ svn status calc
C cal c/button.c
? cal c/button. c. prej
$ cat calc/button.c.prej
grop "linecount': user set to '1256', but update set to '1301'.

To resolve property conflicts, simply ensure that the conflicting properties contain the values that they
should, and then use the svn resolved command to aert Subversion that you have manually resolved the
problem.

You might also have noticed the non-standard way that Subversion currently displays property differ-
ences. You can still run svn diff and redirect the output to create a usable patch file. The patch program
will ignore property patches—as arule, it ignores any noise it can't understand. This does unfortunately
mean that to fully apply a patch generated by svn diff, any property modifications will need to be ap-
plied by hand.

As you can see, the presence of property modifications has no outstanding effect on the typical Subver-
sion workflow. Your general patterns of updating your working copy, checking the status of your files
and directories, reporting on the modifications you have made, and committing those modifications to
the repository are completely immune to the presence or absence of properties. The svn program has
some additional subcommands for actually making property changes, but that is the only noticeable
asymmetry.

Special properties

Subversion has no particular policy regarding properties—you can use them for any purpose. Subversion
asks only that you not use property names that begin with the prefix svn: . That's the namespace that it
sets aside for its own use. In fact, Subversion defines certain properties that have magical effects on the
files and directories to which they are attached. In this section, we'll untangle the mystery, and describe
how these special properties make your lifejust alittle easier.

svn; execut abl e

The svn: execut abl e property is used to control a versioned file's filesystem-level execute permis-
sion bit in a semi-automated way. This property has no defined values—its mere presence indicates a
desire that the execute permission bit be kept enabled by Subversion. Removing this property will re-
store full control of the execute bit back to the operating system.

On many operating systems, the ability to execute afile asa command is governed by the presence of an
execute permission bit. This bit usually defaults to being disabled, and must be explicitly enabled by the
user for each file that needs it. In a working copy, new files are being created all the time as new ver-
sions of existing files are received during an update. This means that you might enable the execute bit on
afile, then update your working copy, and if that file was changed as part of the update, its execute bit
might get disabled. So, Subversion providesthe svn: execut abl e property as a way to keep the exe-
cute bit enabled.

This property has ng effect on filesystems that have no concept of an executable permission bit, such as
FAT32 and NTFS. <2 Also, although it has no defined values, Subversion will forceits value to * when

119

Advanced Topics

setting this property. Finally, this property isvalid only on files, not on directories.
svn: m ne-type

Thesvn: m me-t ype property serves many purposes in Subversion. Besides being a general-purpose
storage location for a file's Multipurpose Internet Mail Extensions (MIME) classification, the value of
this property determines several behavioral characteristics of Subversion itself.

For example, if afile's svn: mi me-t ype property is set to a non-text MIME type (generaly, some-
thing that doesn't begin with t ext / , though there are exceptions), Subversion will assume that the file
contains binary—that is, not human-readable—data. One of the benefits that Subversion typically
provides is contextual, line-based merging of changes received from the server during an update into
your working file. But for files believed to contain binary data, there is no concept of a “line”. So, for
those files, Subversion does not attempt to perform contextual merges during updates. Instead, any time
you have locally modified a binary working copy file that is also being updated, your file is renamed
with a. or i g extension, and then Subversion stores a new working copy file that contains the changes
received during the update, but not your own local modifications, at the original filename. This behavior
is really for the protection of the user against failed attempts at performing contextual merges on files
that simply cannot be contextually merged.

Subversion assists users by running a binary-detection agorithm in the svn import and svn add sub-
commands. These subcommands use a heuristic to guess at a file's “binary-ness’, and then set the
svn: m ne-type property to appl i cati on/ oct et - st r eam(the generic “this is a collection of
bytes” MIME type) on any files that are deemed binary. If Subversion guesses wrong, or if you wish to
set the svn: mi ne- t ype property to something more accurate—perhapsi nage/ png or appl i ca-
ti on/ x- shockwave- f | ash—you can always remove or hand-edit the property.

Finally, if thesvn: m ne-t ype property is set, then the Subversion Apache module will use its value
to populate the Cont ent - t ype: HTTP header when responding to GET requests. This gives a crucial
clue about how to display afile when perusing your repository with aweb browser.

svn:ignore

Thesvn: i gnor e property contains alist of file patterns which certain Subversion operations will ig-
nore. Perhaps the most commonly used special property, it works in conjunction with the gl obal -
i gnor es run-time configuration option (see the section called “Config”) to filter unversioned files and
directories out of commands like svn status, svh add, and svn import.

The rationae behind the svn: i gnor e property is easily explained. Subversion does not assume that
every file or subdirectory in aworking copy directory isintended for version control. Resources must be
explicitly placed under Subversion's management using the svn add or svn import commands. Asare-
sult, there are often many resources in aworking copy that are not versioned.

Now, the svn status command displays as part of its output every unversioned file or subdirectory in a
working copy that is not aready filtered out by the gl obal - i gnor es option (or its built-in default
value). Thisis done so that users can see if perhaps they've forgotten to add a resource to version con-
trol.

But Subversion cannot possibly guess the names of every resource that should be ignored. Also, quite
often there are things that should be ignored in every working copy of a particular repository. To force
every user of that repository to add patterns for those resources to their run-time configuration areas
would be not just a burden, but has the potentia to clash with the configuration needs of other working
copies that the user has checked out.

The solution is to store ignore patterns that are unique to the resources likely to appear in a given direc-
tory with the directory itself. Common examples of unversioned resources that are basically unique to a
directory, yet likely to appear there, include output from program compilations. Or—to use an example
more appropriate to this book—the HTML, PDF, or PostScript files generated as the result of a conver-
2The Windows filesystems use file extensions (such as. EXE, . BAT, and . COM) to denote executable files.

120

Advanced Topics

sion of some source DocBook XML filesto amore legible output format.

Ignore Patternsfor CVSUsers

The Subversion svn:ignore property is very similar in syntax and function to the CVS
. cvsi gnor e file. In fact, if you are migrating a CVS working copy to Subversion, you can directly
migrate the ignore patterns by using the. cvsi gnor e fileasinput file to the svn propset command:

$ svn propset svn:ignore -F .cvsignore .
property ‘'svn:ignore' set on '.'
$

There are, however, some differences in the ways that CV S and Subversion handle ignore patterns. The
two systems use the ignore patterns at some different times, and there are slight discrepancies in what
the ignore patterns apply to. Also, Subversion does not recognize the use of the! pattern as a reset back
to having no ignore patterns at all.

For this purpose, the svn: i gnor e property is the solution. Its value is a multi-line collection of file
patterns, 5 ne pattern per line. The property is set on the directory in which you wish the patterns to be
applied. =~ For example, say you have the following output from svn status:

$ svn status calc

M cal c/button.c
cal c/ cal cul at or
calc/data.c
cal ¢/ debug_I og
cal ¢/ debug 1 0g. 1
cal c/ debug_I 0g. 2. gz
cal c/ debug_I 0g. 3. gz

N) N)))

In this example, you have made some property modifications to but t on. ¢, but in your working copy
you also have some unversioned files, in this case, the latest cal cul at or program that you've com-
piled from your source code, a source file named dat a. ¢, and a set of debugging output log fil% Now,
you know that your build system always results in the cal cul at or program being generated. L And
you know that your test suite always |eaves those debugging log files lying around. These facts are true
for all working copies, not just your own. And you know that you aren't interested in seeing those things
every time you run svn status. So you use svn propedit svn:ignore calc to add some ignore patterns to
the cal c directory. For example, you might add this as the new value of thesvn: i gnor e property:

cal cul at or
debug_| og*

After you've added this property, you will now have a local property modification on the cal ¢ direc-
tory. But notice what else is different about your svn status output:

$ svn status

M cal c
M cal c/button.c
? cal c/data.c

30rhe patterns are strictly for that directory—they do not carry recursively into subdirectories.
1 sn't that the whole point of abuild system?

121

Advanced Topics

Now, all the cruft is missing from the output! Of course, those files are still in your working copy. Sub-
version is simply not reminding you that they are present and unversioned. And now with all the trivial
noise removed from the display, you are left with more interesting items—such as that source code file
that you probably forgot to add to version control.

If you want to see the ignored files, you can pass the --no-ignor e option to subversion:

$ svn status --no-ignore
M cal c/button.c
cal c/ cal cul at or
cal c/data.c
cal ¢/ debug_I og
cal c/ debug_l 0g. 1
cal c/ debug_I 0g. 2. gz
cal c/ debug_I 0g. 3. 9z

—_————

The list of patterns to ignore is also used by svn add and svn import. Both of these operations involve
asking Subversion to begin managing some set of files and directories. Rather than force the user to pick
and choose which files in atree she wishes to start versioning, Subversion uses the ignore patterns to de-
termine which files should not be swept into the version control system as part of alarger recursive addi-
tion or import operation.

svn: keywor ds

Subversion has the ability to substitute keywords—pieces of useful, dynamic information about a ver-
sioned file—into the contents of the file itself. Keywords generally describe information about the last
time the file was known to be modified. Because this information changes each time the file changes,
and more importantly, just after the file changes, it is a hassle for any process except the version control
system to keep the data completely up-to-date. Left to human authors, the information would inevitably
grow stale.

For example, say you have a document in which you would like to display the last date on which it was
modified. Y ou could burden every author of that document to, just before committing their changes, also
tweak the part of the document that describes when it was last changed. But sooner or later, someone
would forget to do that. Instead simply ask Subversion to perform keyword substitution on the
Last ChangedDat e keyword. Y ou control where the keyword is inserted into your document by plac-
ing a keyword anchor at the desired location in the file. This anchor is just a string of text formatted as
$Keywor dNane$

Subversion defines the list of keywords available for substitution. That list contains the following five
keywords, some of which have shorter aliases that you can also use:

Last ChangedDat e
This keyword describes the last time the file was known to have been changed in the repository, and
looks something like $Last ChangedDat e: 2002-07-22 21:42:37 -0700 (Mn, 22
Jul 2002) $. It may be abbreviated as Dat e.

Last ChangedRevi si on
This keyword describes the last known revision in which this file changed in the repository, and
looks something like $Last ChangedRevi si on: 144 $. It may be abbreviated as Rev.

Last ChangedBy
This keyword describes the last known user to change this file in the repository, and looks some-
thing like $Last ChangedBy: harry $. It may be abbreviated as Aut hor

HeadURL

122

Advanced Topics

This keyword describes the full URL to the latest version of the file in the repository, and looks
something like $HeadURL: http://svn.col |l ab. net/repos/trunk/ READVE $. It
may be abbreviated as URL.

This keyword is a compressed combination of the other keywords. Its substitution looks something
like$ld: calc.c 148 2002-07-28 21:30:43Z sally $, andisinterpreted to mean
that the file cal ¢. ¢ waslast changed in revision 148 on the evening of July 28, 2002 by the user
sal ly.

Simply adding keyword anchor text to your file does nothing special. Subversion will never attempt to
perform textual substitutions on your file contents unless explicitly asked to do so. After all, you might
be writing a document < about how to use keywords, and you don't want Subversion to substitute your
beautiful examples of un-substituted keyword anchors!

To tell Subversion whether or not to substitute keywords on a particular file, we again turn to the prop-
erty-related subcommands. The svn: keywor ds property, when set on aversioned file, controls which
keywords will be substituted on that file. The value is a space-delimited list of the keyword names or
aliases found in the previous table.

For example, say you have aversioned file named weat her . t xt that looks like this:

Here is the latest report fromthe front |ines.

$Last ChangedDat e$

Rev

Cumul us cl ouds are appearing nore frequently as sumer approaches.

With no svn: keywor ds property set on that file, Subversion will do nothing special. Now, let's en-
able substitution of the Last ChangedDat e keyword.

$ svn propset svn: keywords "Last ChangedDate Author" weather.txt
property 'svn: keywords' set on 'weather.txt’
$

Now you have made alocal property modification on the weat her . t xt file. You will see no changes
to the file's contents (unless you made some of your own prior to setting the property). Notice that the
file contained a keyword anchor for the Rev keyword, yet we did not include that keyword in the prop-
erty value we set. Subversion will happily ignore requests to substitute keywords that are not present in
the file, and will not substitute keywords that are not present in the svn: keywor ds property value.

Keywords and Spurious Differences

The user-visible result of keyword substitution might lead you to think that every version of a file with
that feature in use differs from the previous version in at least the area where the keyword anchor was
placed. However, this is actually not the case. While checking for local modifications during svn diff,
and before transmitting those local modifications during svn commit, Subversion “un-substitutes’ any
keywords that it previously substituted. The result is that the versions of the file that are stored in the
repository contain only the real modifications that users make to the file.

Immediately after you commit this property change, Subversion will update your working file with the

new substitute text. Instead of seeing your keyword anchor $Last ChangedDat e$, you'll see its sub-

stituted result. That result also contains the name of the keyword, and continues to be bounded by the

dollar sign ($) characters. And as we predicted, the Rev keyword was not substituted because we didn't
... or maybe even a section of abook ...

123

Advanced Topics

ask for it to be.

Here is the latest report fromthe front |ines.

$Last ChangedDat e: 2002-07-22 21:42:37 -0700 (Mon, 22 Jul 2002) $
Rev

Cumul us cl ouds are appearing nore frequently as summer approaches.

If someone else now commits a change to weat her . t xt , your copy of that file will continue to dis-
play the same substituted keyword value as before—until you update your working copy. At that time
the keywords in your weat her . t xt file will be re-substituted with information that reflects the most
recent known commit to that file.

svn: eol -style

Unless otherwise noted using a versioned file's svn: ni ne-t ype property, Subversion assumes the
file contains human-readable data. Generally speaking, Subversion only uses this knowledge to deter-
mineif contextual difference reportsfor that file are possible. Otherwise, to Subversion, bytes are bytes.

This means that by default, Subversion doesn't pay any attention to the type of end-of-line (EOL)
markers used in your files. Unfortunately, different operating system use different tokens to represent
the end of aline of text in afile. For example, the usual line ending token used by software on the Win-
dows platform is a pair of ASCII control characters—carriage return (CR) and line feed (LF). Unix soft-
ware, however, just uses the LF character to denote the end of aline.

Not all of the various tools on these operating systems are prepared to understand files that contain line
endings in a format that differs from the native line ending style of the operating system on which they
are running. Common results are that Unix programs treat the CR character present in Windows files as
aregular character (usually rendered as M), and that Windows programs combine all of the lines of a
Unix file into one giant line because no carriage return-linefeed (or CRLF) character combination was
found to denote the end of line.

This sensitivity to foreign EOL markers can become frustrating for folks who share a file across differ-
ent operating systems. For example, consider a source code file, and devel opers that edit this file on both
Windows and Unix systems. If al the developers always use tools which preserve the line ending style
of thefile, no problems occur.

But in practice, many common tools either fail to properly read afile with foreign EOL markers, or they
convert the file's line endings to the native style when the file is saved. If the former is true for a devel-
oper, he has to use an external conversion utility (such as dos2unix or its companion, unix2dos) to pre-
pare the file for editing. The latter case requires no extra preparation. But both cases result in afile that
differs from the origina quite literally on every line! Prior to committing his changes, the user has two
choices. Either he can use a conversion utility to restore the modified file to the same line ending style
that it was in before his edits were made. Or, he can simply commit the file—new EOL markers and all.

The result of scenarios like these include wasted time and unnecessary modifications to committed files.
Wasted time is painful enough. But when commits change every line in afile, this complicates the job of
determining which of those lines were changed in a non-trivial way. Where was that bug really fixed?
On what line was a syntax error introduced?

The solution to this problem is the svn: eol - st yl e property. When this property is set to a valid
value, Subversion uses it to determine what special processing to perform on the file so that the file's
line ending style isn't flip-flopping with every commit that comes from a different operating system. The
valid values are:

native
This causes the file to contain the EOL markers that are native to the operating system on which
Subversion was run. In other words, if a user on a Windows machine checks out a working copy

124

Advanced Topics

that contains a file with asvn: eol - st yl e property set to nat i ve, that file will contain CRLF
EOL markers. A unix user checking out a working copy which contains the same file will see LF
EOL markersin his copy of thefile.

Note that Subversion will actually store the file in the repository using normalized LF EOL markers
regardless of the operating system. Thisis basically transparent to the user, though.

CRLF
This causes the file to contain CRLF sequences for EOL markers, regardless of the operating system
inuse.

LF
This causes the file to contain LF characters for EOL markers, regardiess of the operating systemin
use.

CR
This causes the file to contain CR characters for EOL markers, regardless of the operating system in
use. Thisline ending style is not very common. It was used on older Macintosh platforms (on which
Subversion doesn't even run).

svn; external s

The svn: ext er nal s property contains instructions for Subversion to populate a versioned directory
with one or more other checked-out Subversion working copies. For more information on this keyword
and its use, see the section called “Externals Definitions’.

Externals Definitions

Sometimes it is useful to construct a working copy that is made out of a number of different checkouts.
For example, you may want different subdirectories to come from different locations in a repository, or
perhaps from different repositories altogether. Y ou could certainly setup such a scenario by hand—using
svn checkout to create the sort of nested working copy structure you are trying to achieve. But if this
layout is important for everyone who uses your repository, every other user will need to perform the
same checkout operations that you did.

Fortunately, Subversion provides support for externals definitions. An externals definition is a mapping
of alocal directory to the URL—and possibly a particular revision—of a versioned resource. In Subver-
sion, you declare externals definitions in groups using the svn: ext er nal s property. This property
may be set on any versioned directory, and its value is a multi-line table of subdirectories (relative to the
versioned directory on which the property is set) and fully qualified, absolute Subversion repository
URLs.

$ svn propget svn:externals calc

t hi rd- party/ sounds http://sounds. r ed- bean. com r epos

t hi rd- party/skins htt p://skins.red-bean. confrepositories/skinproj
third-party/skins/toolkit -r21 http://svn.red-bean. conirepos/skin-naker

The convenience of thesvn: ext er nal s property isthat onceit is set on aversioned directory, every-
one who checks out a working copy with that directory also gets the benefit of the externals definition.
In other words, once one person has made the effort to define those nested working copy checkouts, no
one else has to bother—Subversion will, upon checkout of the original working copy, also checkout the
external working copies.

Note the previous external s definition example. When someone checks out a working copy of the cal ¢
directory, Subversion a so continues to checkout the items found in its externals definition.

125

Advanced Topics

$ svn checkout http://svn.exanpl e.comrepos/calc
A calc

A cal c/ Makefile

A calc/integer.c

A calc/button.c

Checked out revision 148.

Fetching external iteminto calc/third-party/sounds
A cal c/third-party/sounds/di ng. ogg

A cal c/third-party/sounds/dong. ogg

A cal c/third-party/sounds/cl ang. ogg

A cal ¢/ third- party/ sounds/ bang. ogg
A calc/third-party/sounds/twang. ogg
Checked out revision 14.

Fetching external iteminto calc/third-party/skins

If you need to change the externals definition, you can do so using the regular property modification
subcommands. When you commit a change to the svn: ext er nal s property, Subversion will syn-
chronize the checked-out items against the changed externals definition when you next run svn update.
The same thing will happen when others update their working copies and receive your changes to the
externals definition.

The svn status command also recognizes externals definitions, displaying a status code of X for the dis-
joint subdirectories into which externals are checked out, and then recursing into those subdirectories to
display the status of the external items themselves.

The support that exists for externals definitions in Subversion today can be a little misleading, though.
The auxiliary working copies created via the externals definition support are still disconnected from the
primary working copy. And Subversion still only truly operates on non-disjoint working copies. So, for
example, if you want to commit changes that you've made in one or more of the auxiliary working
copies, you must run svn commit explicitly on those working copies, not on the primary working copy.

Also, since the definitions themselves use absolute URLS, moving or copying a directory to which they
are attached will not affect what gets checked out as an external (though the relative local target subdi-
rectory will, of course, move with renamed directory). This can be confusing—even frustrating—in cer-
tain situtations. For example, if you use externals definitions on a directory in your / t r unk develop-
ment line which point to other areas of that same line, and then you use svn copy to branch that line to
some new location / br anches/ my- br anch, the externals definitions on items in your new branch
will still refer to versioned resources in / t r unk. Also, be aware that if you need to re-parent your
working copy (using svn switch --relocate), externals definitions will not also be re-parented.

Vendor branches

Asis especialy the case when developing software, the data that you maintain under version control is
often closely related to, or perhaps dependent upon, someone else's data. Generally, the needs of your
project will dictate that you stay as up-to-date as possible with the data provided by that external entity
without sacrificing the stability of your own project. This scenario plays itself out all the any-
time—where that the information generated by one group of people has a direct effect on that which is
generated by another group.

For example, software developers might be working on an application which makes use of a third-party
library. Subversion has just such a relationship with the Apache Portable Runtime library (see the sec-
tion called “ The Apache Portable Runtime Library”). The Subversion source code depends on the APR
library for all its portability needs. In earlier stages of Subversion's development, the project closely

126

Advanced Topics

tracked APR's changing API, always sticking to the “bleeding edge’ of the library's code churn. Now
that both APR and Subversion have matured, Subversion attempts to synchronize with APR's library
API only at well-tested, stable release points.

Now, if your project depends on someone else's information, there are several ways that you could at-
tempt to synchronize that information with your own. Most painfully, you could issue oral or written in-
structions to al the contributors of your project, telling them to make sure that they have the specific
versions of that third-party information that your project needs. If the third-party information is main-
tained in a Subversion repository, you could also use Subversion's externals definitions to effectively
“pin down” specific versions of that information to some location in your own working copy directory
(see the section called “ Externals Definitions”).

But sometimes you want to maintain custom modifications to third-party data in your own version con-
trol system. Returning to the software development example, programmers might need to make modifi-
cations to that third-party library for their own purposes. These modifications might include new func-
tionality or bug fixes, maintained internally only until they become part of an official release of the
third-party library. Or the changes might never be relayed back to the library maintainers, existing solely
as custom tweaks to make the library further suit the needs of the software developers.

Now you face an interesting situation. Y our project could house its custom modifications to the third-
party datain some digointed fashion, such as using patch files or full-fledged alternate versions of files
and directories. But these quickly become maintenance headaches, requiring some mechanism by which
to apply your custom changes to the third-party data, and necessitating regeneration of those changes
with each successive version of the third-party data that you track.

The solution to this problem is to use vendor branches. A vendor branch is a directory tree in your own
version control system that contains information provided by a third-party entity, or vendor. Each ver-
sion of the vendor's data that you decide to absorb into your project is called a vendor drop.

Vendor branches provide two key benefits. First, by storing the currently supported vendor drop in your
own version control system, the members of your project never need to question whether they have the
right version of the vendor's data. They simply receive that correct version as part of their regular work-
ing copy updates. Secondly, because the data lives in your own Subversion repository, you can store
your custom changes to it in-place—you have no more need of an automated (or worse, manual) method
for swapping in your customizations.

General Vendor Branch Management Procedure

Managing vendor branches generally works like this. You create a top-level directory (such as /
vendor) to hold the vendor branches. Then you import the third party code into a subdirectory of that
top-level directory. Y ou then copy that subdirectory into your main development branch (for example, /
t runk) at the appropriate location. You always make your local changes in the main development
branch. With each new release of the code you are tracking you bring it into the vendor branch and
merge the changesinto / t r unk, resolving whatever conflicts occur between your local changes and the
upstream changes.

Perhaps an example will help to clarify this algorithm. Well use a scenario where your development
team is creating a calculator program that links against a third-party complex number arithmetic library,
libcomplex. Well begin with the initial creation of the vendor branch, and the import of the first vendor
drop.

ﬁinsvn i mport /path/to/libconmplex-1.0 \
http://svn. exanpl e. conf repos/ vendor/ | i bconpl ex/ current \
-m'inmporting initial 1.0 vendor drop'

127

Advanced Topics

We now have the current version of the libcomplex source code in /ven-
dor/ 1 i bconpl ex/ current. Now, we tag that version (see the section called “Tags’) and then
copy it into the main development branch so we can make our customizationsto it.

$ svn copy http://svn. exanpl e.conlrepos/vendor/libconpl ex/current \
http://svn. exanpl e. coni repos/vendor/|i bconpl ex/ 1.0 \
-m'tagging |ibconplex-1.0

$ svn copy http://svn. exanpl e. conl repos/vendor/|ibconplex/1.0 \
http://svn. exanpl e. coni repos/ cal ¢/l i bconpl ex \
-m'bringing |ibcomplex-1.0 into the main branch’

We check out our project's main branch—which now includes a copy of the first vendor drop—and we
get to work customizing the libcomplex code. Before Wgsknow it, our modified version of libcomplex is
now completely integrated into our calculator program.

A few weeks later, the developers of libcomplex release a new version of their library—version
1.1—which contains some features and functionality that we really want. But we'd like to upgrade to
this new version without losing our customizations to the existing version. As you might have guessed,
what we essentially would like to do is to replace our current baseline version of libcomplex 1.0 with a
copy of libcomplex 1.1, and then re-apply the custom modifications we previously made to that library
to the new version.

To perform this upgrade, we checkout a copy of our vendor branch, and replace the cur r ent version
with the new libcomplex 1.1 source code. After committing this change, our cur r ent branch now con-
tains the new vendor drop. We tag the new version, and then merge the differences between the tag of
the previous version and the new current version into our main development branch.

$ cd worki ng-copi es/cal c

$ svn nerge http://svn. exanpl e. com repos/vendor/|ibconplex/1.0 \
http://svn. exanpl e. conl repos/vendor /| i bconpl ex/current \
i bconpl ex

...# resolve all the conflicts between their changes and our changes
$ svn commit -m'nerging |libconplex-1.1 into the main branch’

In the trivial use-case, the new version of our third-party tool would look, from a files-and-directories
point of view, just like the previous version. In other words, none of the libcomplex source files would
have been deleted, renamed or moved to different locations—in short, in a perfect world, our modifica-
tions would apply cleanly to the new version of the library, with absolutely no complications or con-
flicts.

But things aren't always that simple, and in fact it is quite common for source files to get moved around
between releases of software. This complicates the process of ensuring that our modifications are till
valid for the new version of code, and can quickly degrade into a situation where we have to manually
recreate our customizations in the new version. Once Subversion knows about the history of a given
source file—including al its previous locations—the process of merging in the new version of the li-
brary is pretty simple. But we are responsible for telling Subversion how the source file layout changed
from vendor drop to vendor drop.

svn_load_dirs.pl

Vendor drops that contain more than a few deletes, additions and moves complicate the process of up-
grading to each successive version of the third-party data. So Subversion supplies the svn_load_dirs.pl
33and entirely bug-free, of course!

128

Advanced Topics

script to assist with this process. This script automates the importing steps we mentioned in the general
vendor branch management procedure to make sure that mistakes are minimized. You will still be re-
sponsible for using the merge commands to merge the new versions of the third-party data into your
main development branch, but svn_load_dirs.pl can help you more quickly and easily arrive at that
stage.

In short, svn_load_dirs.pl isan enhancement to svn import that has several important characteristics:
e It can berun at any point in time to bring an existing directory in the repository to exactly match an
external directory, performing all the necessary adds and deletes, and optionally performing moves,

too.

» It takes care of complicated series of operations between which Subversion requires an intermediate
commit—such as before renaming afile or directory twice.

» It will optionally tag the newly imported directory.

It will optionally add arbitrary properties to files and directories that match aregular expression.

svn_load_dirs.pl takes three mandatory arguments. The first argument is the URL to the base Subver-
sion directory to work in. This argument is followed by the URL—rélative to the first argument—into
which the current vendor drop will be imported. Finally, the third argument is the local directory to im-
port. Using our previous example, atypical run of svn_load_dirs.pl might look like:

$ svn_load_dirs.pl http://svn.exanpl e.conm repos/vendor/|ibconplex \
current \
/path/to/libconplex-1.1

You can indicate that you'd like svn_load_dirs.pl to tag the new vendor drop by passing the -t com-
mand-line option and specifying a tag name. This tag is another URL relative to the first program argu-
ment.

$ svn_load_dirs.pl -t libcomplex-1.1 \
http://svn. exanpl e. coni repos/vendor/ | i bconpl ex \
current \

/path/to/libconplex-1.1

When you run svn_load_dirs.pl, it examines the contents of your existing “current” vendor drop, and
compares them with the proposed new vendor drop. In the trivial case, there will be no files that are in
one version and not the other, and the script will perform the new import without incident. If, however,
there are discrepancies in the file layouts between versions, svn_load_dirs.pl will prompt you for how
you would like to resolve those differences. For example, you will have the opportunity to tell the script
that you know that the file mat h. ¢ in version 1.0 of libcomplex was renamed to ari t hnmeti c. c in
libcomplex 1.1. Any discrepancies not explained by moves are treated as regular additions and deletions.

The script also accepts a separate configuration file for setting properties on files and directories match-
ing a regular expression that are added to the repository. This configuration file is specified to
svn_load_dirs.pl using the - p command-line option. Each line of the configuration file is a whitespace-
delimited set of two or four values: a Perl-style regular expression to match the added path against, a
control keyword (either br eak or cont), and then optionally a property name and value.

\. png$ br eak svn: m ne-type i mage/ png

129

Advanced Topics

\.jpe?g$ br eak svn: n ne-type i mage/ j peg

\. mBu$ cont svn: m ne-type audi o/ x- npegur |
\. nBu$ br eak svn: eol -styl e LF

Cx br eak svn: eol -styl e native

For each added path, the configured property changes whose regular expression matches the path are ap-
plied in order, unless the control specification is br eak (which means that no more property changes
should be applied to that path). If the control specification is cont —an abbreviation for
cont i nue—then matching will continue with the next line of the configuration file.

Any whitespace in the regular expression, property name, or property value must be surrounded by ei-
ther single or double quote characters. You can escape quote characters that are not used for wrapping
whitespace by preceding them with a backslash (\) character. The backslash escapes only quotes when
parsing the configuration file, so do not protect any other characters beyond what is necessary for the
regular expression.

130

Chapter 8. Developer Information

Subversion is an open-source software project developed under an Apache-style software license. The
project is financially backed by CollabNet, Inc., a California-based software development company. The
community that has formed around the development of Subversion aways welcomes new members who
can donate their time and attention to the project. Volunteers are encouraged to assist in any way they
can, whether that means finding and diagnosing bugs, refining existing source code, or fleshing out
whole new features.

This chapter is for those who wish to assist in the continued evolution of Subversion by actualy getting
their hands dirty with the source code. We will cover some of the software's more intimate details, the
kind of technical nitty-gritty that those developing Subversion itself—or writing entirely new tools
based on the Subversion libraries—should be aware of. If you don't foresee yourself participating with
the software at such alevel, fed free to skip this chapter with confidence that your experience as a Sub-
version user will not be affected.

Layered Library Design

Subversion has a modular design, implemented as a collection of C libraries. Each library has a well-
defined purpose and interface, and most modules are said to exist in one of three main layers—the
Repository Layer, the Repository Access (RA) Layer, or the Client Layer. We will examine these layers
shortly, but first, see our brief inventory of Subversion's libraries in Table 7-1. For the sake of consis-
tency, we will refer to the libraries by their extensionless Unix library names (e.g.: libsvn_fs, libsvn_wc,
mod_dav_svn).

Table8.1. A Brief Inventory of the Subversion Libraries

Library Description

libsvn_client Primary interface for client programs

libsvn_delta Tree and text differencing routines

libsvn_fs The Subversion filesystem library

libsvn_ra Repository Access commons and module loader

libsvn_ra dav The WebDAV Repository Access module

libsvn_ra local The local Repository Access module

libsvn_ra svn A custom protocol Repository Access module

libsvn_repos Repository interface

libsvn_subr Miscellaneous hel pful subroutines

libsvn_wc The working copy management library

mod_authz_svn Apache authorization module for Subversion
repositories access via WebDAYV.

mod_dav_svn Apache module for mapping WebDAV operations
to Subversion ones

The fact that the word “miscellaneous’ only appears once in Table 7-1 is a good sign. The Subversion
development team is serious about making sure that functionality lives in the right layer and libraries.
Perhaps the greatest advantage of the modular design is its lack of complexity from a developer's point
of view. As adeveloper, you can quickly formulate that kind of “big picture” that allows you to pinpoint
the location of certain pieces of functionality with relative ease.

131

Developer Information

Another benefit of modularity is the ability to replace a given module with awhole new library that im-
plements the same APl without affecting the rest of the code base. In some sense, this happens within
Subversion already. The libsvn_ra dav, libsvn_ra local, and libsvn_ra svn al implement the same in-
terface. And all three communicate with the Repository Layer—Ilibsvn_ra dav and libsvn_ra_svn do so
across a network, and libsvn_ra local connectsto it directly.

The client itself also highlights modularity in the Subversion design. While Subversion currently comes
with only a command-line client program, there are already a few other programs being developed by
third parties to act as GUIs for Subversion. Again, these GUIs use the same APIs that the stock com-
mand-line client does. Subversion's libsvn_client library is the one-stop shop for most of the functional-
ity necessary for designing aworking Subversion client (see the section called “Client Layer”).

Repository Layer

When referring to Subversion's Repository Layer, were generally talking about two libraries—the
repository library, and the filesystem library. These libraries provide the storage and reporting mecha-
nisms for the various revisions of your version-controlled data. This layer is connected to the Client
Layer via the Repository Access Layer, and is, from the perspective of the Subversion user, the stuff at
the “other end of theline.”

The Subversion Filesystem is accessed via the libsvn_fs API, and is not a kernel-level filesystem that
one would install in an operating system (like the Linux ext2 or NTFS), but a virtua filesystem. Rather
than storing “files” and “directories’ as real files and directories (as in, the kind you can navigate
through using your favorite shell program), it uses a database system for its back-end storage mecha
nism. Currently, the database system in use is Berkeley DB. " However, there has been considerable in-
terest by the development community in giving future releases of Subversion the ability to use other
back-end database systems, perhaps through a mechanism such as Open Database Connectivity
(ODBC).

The filesystem API exported by libsvn_fs contains the kinds of functionality you would expect from any
other filesystem API: you can create and remove files and directories, copy and move them around,
modify file contents, and so on. It also has features that are not quite as common, such as the ability to
add, modify, and remove metadata (“properties’) on each file or directory. Furthermore, the Subversion
Filesystem is a versioning filesystem, which means that as you make changes to your directory tree,
Subversion remembers what your tree looked like before those changes. And before the previous
changes. And the previous ones. And so on, all the way back through versioning time to (and just be-
yond) the moment you first started adding things to the filesystem.

All the modifications you make to your tree are done within the context of a Subversion transaction. The
following is asimplified general routine for modifying your filesystem:

1. Begin aSubversion transaction.

2. Make your changes (adds, deletes, property modifications, etc.).

3. Commit your transaction.

Once you have committed your transaction, your filesystem modifications are permanently stored as his-

torical artifacts. Each of these cycles generates a single new revision of your tree, and each revision is
forever accessible as an immutable snapshot of “the way things were.”

The Transaction Distraction

34The choice of Berkeley DB brought several automatic features that Subversion needed, such as data integrity, atomic writes, re-
coverability, and hot backups.

132

Developer Information

The notion of a Subversion transaction, especially given its close proximity to the database code in lib-
svn_fs, can become easily confused with the transaction support provided by the underlying database it-
self. Both types of transaction exist to provide atomicity and isolation. In other words, transactions give
you the ability to perform a set of actionsin an “al or nothing” fashion—either al the actions in the set
complete with success, or they al get treated as if none of them ever happened—and in a way that does
not interfere with other processes acting on the data.

Database transactions generally encompass small operations related specifically to the modification of
data in the database itself (such as changing the contents of a table row). Subversion transactions are
larger in scope, encompassing higher-level operations like making modifications to a set of files and di-
rectories which are intended to be stored as the next revision of the filesystem tree. If that isn't confusing
enough, consider this: Subversion uses a database transaction during the creation of a Subversion trans-
action (so that if the creation of Subversion transaction fails, the database will look asif we had never at-
tempted that creation in the first place)!

Fortunately for users of the filesystem API, the transaction support provided by the database system it-
self is hidden almost entirely from view (as should be expected from a properly modularized library
scheme). It is only when you start digging into the implementation of the filesystem itself that such
things become visible (or interesting).

Most of the functionality provided by the filesystem interface comes as an action that occurs on a
filesystem path. That is, from outside of the filesystem, the primary mechanism for describing and ac-
cessing the individual revisions of files and directories comes through the use of path strings like /

f oo/ bar, just asif you were addressing files and directories through your favorite shell program. You
add new files and directories by passing their paths-to-be to the right API functions. Y ou query for infor-
mation about them by the same mechanism.

Unlike most filesystems, though, a path alone is not enough information to identify afile or directory in
Subversion. Think of a directory tree as a two-dimensional system, where a node's siblings represent a

sort of left-and-right motion, and descending into subdirectories a downward motion. Figure 7-2 shows a
typical representation of atree as exactly that.

Figure8.1. Filesand Directoriesin Two Dimensions

foa/

-

[]

o) [

itty bitty

Of course, the Subversion filesystem has a nifty third dimension that most filesystems do not
have—Time! ~* In the filesystem interface, nearly every function that has a pat h argument also ex-

3B\We understand that this may come as a shock to sci-fi fans who have long been under the impression that Time was actually the
fourth dimension, and we apologize for any emotional traumainduced by our assertion of a different theory.

133

Developer Information

pects ar oot argument. This svn_fs root_t argument describes either arevision or a Subversion trans-
action (which is usually just arevision-to-be), and provides that third-dimensional context needed to un-
derstand the difference between / f oo/ bar in revision 32, and the same path as it existsin revision 98.
Figure 7-3 shows revision history as an added dimension to the Subversion filesystem universe.

Figure 8.2. Revisioning Time—the Third Dimension!

foa/:5

As we mentioned earlier, the libsvn_fs APl looks and feels like any other filesystem, except that it has
this wonderful versioning capability. It was designed to be usable by any program interested in a ver-
sioning filesystem. Not coincidentally, Subversion itself is interested in that functionality. But while the
filesystem API should be sufficient for basic file and directory versioning support, Subversion wants
more—and that is where libsvn_repos comesin.

The Subversion repository library (libsvn_repos) is basically a wrapper library around the filesystem
functionality. Thislibrary is responsible for creating the repository layout, making sure that the underly-
ing filesystem isinitialized, and so on. Libsvn_repos a so implements a set of hooks—scripts that are ex-
ecuted by the repository code when certain actions take place. These scripts are useful for notification,
authorization, or whatever purposes the repository administrator desires. This type of functionality, and
other utility provided by the repository library, is not strictly related to implementing a versioning
filesystem, which iswhy it was placed into its own library.

Developers who wish to use the libsvn_repos API will find that it is not a complete wrapper around the
filesystem interface. That is, only certain major events in the general cycle of filesystem activity are
wrapped by the repository interface. Some of these include the creation and commit of Subversion trans-
actions, and the modification of revision properties. These particular events are wrapped by the reposi-
tory layer because they have hooks associated with them. In the future, other events may be wrapped by
the repository API. All of the remaining filesystem interaction will continue to occur directly with lib-
svn_fs AP, though.

For example, here is a code segment that illustrates the use of both the repository and filesystem inter-
faces to create a new revision of the filesystem in which a directory is added. Note that in this example
(and all others throughout this book), the SVN_ERR macro simply checks for a non-successful error re-
turn from the function it wraps, and returns that error if it exists.

Example 8.1. Using the Repository L ayer

134

Developer Information

/* Create a new directory at the path NEWD RECTORY in the Subversion
repository |l ocated at REPOS PATH. Performall nenory allocation in
POOL. This function will create a new revision for the addition of
NEW DI RECTORY. */

static svn_ error_t *

make new directory (const char *repos_path,

const char *new directory,
apr _pool t *pool)

svn_error_t *err;
svn_repos_t *repos;
svn_fs t *fs;

svn_revnumt youngest_rev;
svn_fs_txn_t *txn;
svn_fs_root _t *txn_root;
const char *conflict_str;

/* Open the repository |located at REPOS PATH. */
SVN_ERR (svn_repos_open (&repos, repos_path, pool));

/* Get a pointer to the filesystemobject that is stored in
REPCS. */
fs = svn_repos_fs (repos);

/* Ask the filesystemto tell us the youngest revision that
currently exists. */
SVN_ERR (svn_fs_youngest _rev (&oungest _rev, fs, pool));

/* Begin a new transaction that is based on YOUNGEST REV. W are
less likely to have our |later commt rejected as conflicting if we
always try to make our changes agai nst a copy of the |atest snapshot
of the filesystemtree. */

SVN_ERR (svn_fs_begin_txn (& xn, fs, youngest_rev, pool));

/* Now that we have started a new Subversion transaction, get a root
obj ect that represents that transaction. */
SVN_ERR (svn_fs_txn_root (& xn_root, txn, pool));

/* Create our new directory under the transaction root, at the path
NEW DI RECTORY. */
SVN ERR (svn_fs make dir (txn_root, new directory, pool));

/* Commt the transaction, creating a new revision of the filesystem
whi ch includes our added directory path. */
err = svn_repos_fs_commt_txn (&conflict_str, repos,
&oungest _rev, txn, pool);
if (! err)

/* No error? Excellent! Print a brief report of our success. */
printf ("Directory '%' was successfully added as new revision "
"o SVN REVNUM T FMT "'.\n", new. directory, youngest _rev);

}
else if (err->apr_err == SVN ERR FS CONFLI CT)

/* Uh-oh. Qur conmt failed as the result of a conflict
(sonmeone el se seens to have nade changes to the sane area
of the filesystemthat we tried to nodify). Print an error
nmessage. */

printf ("A conflict occurred at path '%' while attenpting

"to add directory '%' to the repository at '%'.\n",
conflict_str, new. directory, repos_path);

el se

135

Developer Information

/* Sonme other error has occurred. Print an error nessage. */
printf ("An error occurred while attenpting to add directory ' %'
"to the repository at '%'.\n",
new di rectory, repos_path);

}

/* Return the result of the attenpted commit to our caller. */
return err;

In the previous code segment, calls were made to both the repository and filesystem interfaces. We
could just as easily have committed the transaction using svn_fs_comi t _t xn. But the filesystem
API knows nothing about the repository library's hook mechanism. If you want your Subversion reposi-
tory to automatically perform some set of non-Subversion tasks every time you commit a transaction
(like, for example, sending an email that describes all the changes made in that transaction to your de-
veloper mailing list), you need to use the libsvn reposwrapped version of that
function—svn_repos_fs_commit _txn. This function will actualy first run the pre- conmi t

hook script if one exists, then commit the transaction, and finally will run apost - conmi t hook script.
The hooks provide a special kind of reporting mechanism that does not really belong in the core filesys-
tem library itself. (For more information regarding Subversion's repository hooks, see the section called
“Hook Scripts’.)

The hook mechanism requirement is but one of the reasons for the abstraction of a separate repository li-
brary from the rest of the filesystem code. The libsvn_repos API provides several other important utili-
ties to Subversion. These include the abilities to:

1. create, open, destroy, and perform recovery steps on a Subversion repository and the filesystem in-
cluded in that repository.

2. describe the differences between two filesystem trees.

3. query for the commit log messages associated with all (or some) of the revisions in which a set of
files was modified in the filesystem.

4. generate a human-readable “dump” of the filesystem, a complete representation of the revisionsin
the filesystem.

5. parsethat dump format, loading the dumped revisions into a different Subversion repository.

As Subversion continues to evolve, the repository library will grow with the filesystem library to offer
increased functionality and configurable option support.

Repository Access Layer

If the Subversion Repository Layer is at “the other end of the line”, the Repository Access Layer is the
line itself. Charged with marshalling data between the client libraries and the repository, this layer in-
cludes the libsvn_ra module loader library, the RA modules themselves (which currently includes lib-
svn_ra dav, libsvn_ra local, and libsvn_ra svn), and any additional libraries needed by one or more of
those RA modules, such as the mod_dav_svn Apache module with which libsvn_ra_dav communicates
or libsvn ra svn's server, svnserve.

Since Subversion uses URL s to identify its repository resources, the protocol portion of the URL schema
(usually file:, http:, https:, or svn:) is used to determine which RA module will handle the
communications. Each module registers a list of the protocols it knows how to “speak” so that the RA
loader can, at runtime, determine which module to use for the task at hand. You can determine which

136

Developer Information

RA modules are available to the Subversion command-line client, and what protocols they claim to sup-
port, by running svn --version:

$ svn --version
svn, version 1.0.1 (r9023)
conpi l ed Mar 17 2004, 09:31:13

Copyright (C) 2000-2004 Coll abNet.
Subversion is open source software, see http://subversion.tigris.org/
This product includes software devel oped by Col |l abNet (http://ww. Col | ab. Net/).

The follow ng repository access (RA) nodul es are avail abl e:

* ra_dav : Mddule for accessing a repository via WbDAV (DeltaV) protocol
- handles 'http' schemm
- handl es 'https' schema
* ra_local : Mdule for accessing a repository on |ocal disk.
- handles '"file'" schem
* ra_svn : Mdule for accessing a repository using the svn network protocol
- handl es 'svn' schemn

RA-DAV (Repository Access Using HTTP/DAV)

Thelibsvn_ra dav library is designed for use by clientsthat are being run on different machines than the
servers with which they communicating, specifically machines reached using URLSs that contain the
http: orhttps: protocol portions. To understand how this module works, we should first mention a
couple of other key components in this particular configuration of the Repository Access Layer—the
powerful Apache HTTP Server, and the Neon HTTP/WebDAYV client library.

Subversion's primary network server is the Apache HTTP Server. Apache is a time-tested, extensible
open-source server process that is ready for serious use. It can sustain a high network load and runs on
many platforms. The Apache server supports a number of different standard authentication protocols,
and can be extended through the use of modules to support many others. It also supports optimizations
like network pipelining and caching. By using Apache as a server, Subversion gets all of these features
for free. And since most firewalls already allow HTTP traffic to pass through, sysadmins typically don't
even have to change their firewall configurations to allow Subversion to work.

Subversion uses HTTP and WebDAV (with DeltaV) to communicate with an Apache server. You can
read more about this in the WebDAV section of this chapter, but in short, WebDAV and DeltaV are ex-
tensions to the standard HTTP 1.1 protocol that enable sharing and versioning of files over the web.
Apache 2.0 comes with mod_dav, an Apache module that understands the DAV extensions to HTTP.
Subversion itself supplies mod_dav_svn, though, which is another Apache module that works in con-
junction with (really, as a back-end to) mod_dav to provide Subversion's specific implementations of
WebDAV and DeltaV.

When communicating with arepository over HTTP, the RA loader library chooses libsvn_ra dav as the
proper access module. The Subversion client makes calls into the generic RA interface, and lib-
svn_ra _dav maps those calls (which embody rather large-scale Subversion actions) to a set of HTTF/
WebDAYV requests. Using the Neon library, libsvn_ra_dav transmits those requests to the Apache server.
Apache receives these requests (exactly as it does generic HTTP requests that your web browser might
make), notices that the requests are directed at a URL that is configured as a DAV location (using the
Locat i on directive in ht t pd. conf), and hands the request off to its own mod_dav module. When
properly configured, mod dav knows to use Subversion's mod dav_svn for any filesystem-related
needs, as opposed to the generic mod_dav_fs that comes with Apache. So ultimately, the client is com-
municating with mod_dav_svn, which binds directly to the Subversion Repository Layer.

That was asimplified description of the actual exchanges taking place, though. For example, the Subver-
sion repository might be protected by Apache's authorization directives. This could result in initial at-

137

Developer Information

tempts to communicate with the repository being rejected by Apache on authorization grounds. At this
point, libsvn_ra_dav gets back the notice from Apache that insufficient identification was supplied, and
calls back into the Client Layer to get some updated authentication data. If the datais supplied correctly,
and the user has the permissions that Apache seeks, libsvn_ra dav's next automatic attempt at perform-
ing the original operation will be granted, and all will be well. If sufficient authentication information
cannot be supplied, the request will ultimately fail, and the client will report the failure to the user.

By using Neon and Apache, Subversion gets free functionality in several other complex aress, too. For
example, if Neon finds the OpenSSL libraries, it alows the Subversion client to attempt to use SSL-
encrypted communications with the Apache server (whose own mod_ssl can “speak the language”).
Also, both Neon itself and Apache's mod_deflate can understand the “deflate” algorithm (the same used
by the PKZIP and gzip programs), so requests can be sent in smaller, compressed chunks across the
wire. Other complex features that Subversion hopes to support in the future include the ability to auto-
matically handle server-specified redirects (for example, when a repository has been moved to a new
canonical URL) and taking advantage of HTTP pipelining.

RA-SVN (Custom Protocol Repository Access)

In addition to the standard HTTP/WebDAV protocol, Subversion also provides an RA implementation
that uses a custom protocol. The libsvn_ra_svn module implements its own network socket connectivity,
and communicates with a stand-alone server—the svnser ve program—on the machine that hosts the
repository. Clients access the repository using thesvn: / / schema.

This RA implementation lacks most of the advantages of Apache mentioned in the previous section;
however, it may be appealing to some sysadmins nonetheless. It is dramatically easier to configure and
run; setting up an svnser ve process is nearly instantaneous. It is also much smaller (in terms of lines
of code) than Apache, making it much easier to audit, for security reasons or otherwise. Furthermore,
some sysadmins may already have an SSH security infrastructure in place, and want Subversion to use
it. Clientsusing ra_svn can easily tunnel the protocol over SSH.

RA-Local (Direct Repository Access)

Not al communications with a Subversion repository require a powerhouse server process and a net-
work layer. For users who simply wish to access the repositories on their local disk, they may do so us-
ing file: URLs and the functionality provided by libsvn_ra local. This RA module binds directly
with the repository and filesystem libraries, so no network communication isrequired at all.

Subversion requires the server name included as part of the fil e: URL be either | ocal host or
empty, and that there be no port specification. In other words, your URLs should look like either
file://1ocal host/path/to/reposorfile:///path/tolrepos.

Also, be aware that Subversion'sfi | e: URLSs cannot be used in aregular web browser the way typical
file: URLscan. When you attempt to view af i | e: URL inaregular web browser, it reads and dis-
plays the contents of the file at that location by examining the filesystem directly. However, Subver-
sion's resources exist in a virtual filesystem (see the section called “Repository Layer”), and your
browser will not understand how to read that filesystem.

Your RA Library Here

For those who wish to access a Subversion repository using still another protocol, that is precisely why
the Repository Access Layer is modularized! Developers can simply write anew library that implements
the RA interface on one side and communicates with the repository on the other. Y our new library can
use existing network protocols, or you can invent your own. Y ou could use inter-process communication
(IPC) calls, or—let's get crazy, shall we?—you could even implement an email-based protocol. Subver-
sion supplies the APIs; you supply the creativity.

Client Layer

138

Developer Information

On the client side, the Subversion working copy is where all the action takes place. The bulk of func-
tionality implemented by the client-side libraries exists for the sole purpose of managing working
copies—directories full of files and other subdirectories which serve as a sort of local, editable reflec-
“tion” of one or more repository locations—and propagating changes to and from the Repository Access

layer.

Subversion's working copy library, libsvn_wc, is directly responsible for managing the datain the work-
ing copies. To accomplish this, the library stores administrative information about each working copy
directory within a special subdirectory. This subdirectory, named . svn is present in each working copy
directory and contains various other files and directories which record state and provide a private
workspace for administrative action. For those familiar with CVS, this. svn subdirectory is similar in
purpose to the CVS administrative directories found in CV S working copies. For more information about
the . svn administrative area, see the section called “Inside the Working Copy Administration Area’in
this chapter.

The Subversion client library, libsvn_client, has the broadest responsibility; itsjob is to mingle the func-
tionality of the working copy library with that of the Repository Access Layer, and then to provide the
highest-level API to any application that wishes to perform general revision control actions. For exam-
ple, thefunction svn_cl i ent _checkout takesaURL asan argument. It passes this URL to the RA
layer and opens an authenticated session with a particular repository. It then asks the repository for a
certain tree, and sends this tree into the working copy library, which then writes a full working copy to
disk (. svn directoriesand al).

The client library is designed to be used by any application. While the Subversion source code includes
a standard command-line client, it should be very easy to write any number of GUI clients on top of the
client library. New GUIs (or any new client, really) for Subversion need not be clunky wrappers around
the included command-line client—they have full access viathe libsvn_client API to same functionality,
data, and callback mechanisms that the command-line client uses.

Binding Directly—A Word About Correctness

Why should your GUI program bind directly with alibsvn_client instead of acting as awrapper around a
command-line program? Besides simply being more efficient, this can address potential correctness is-
suesaswell. A command-line program (like the one supplied with Subversion) that binds to the client li-
brary needs to effectively translate feedback and requested data bits from C types to some form of hu-
man-readable output. This type of translation can be lossy. That is, the program may not display all of
the information harvested from the API, or may combine bits of information for compact representation.

If you wrap such a command-line program with yet another program, the second program has access
only to already-interpreted (and as we mentioned, likely incomplete) information, which it must again
trangdlate into its representation format. With each layer of wrapping, the integrity of the original datais
potentially tainted more and more, much like the result of making a copy of a copy (of acopy ...) of a
favorite audio or video cassette.

Using the APIs

Developing applications against the Subversion library APIs is fairly straightforward. All of the public
header fileslivein the subver si on/ i ncl ude directory of the source tree. These headers are copied
into your system locations when you build and install Subversion itself from source. These headers rep-
resent the entirety of the functions and types meant to be accessible by users of the Subversion libraries.

The first thing you might notice is that Subversion's datatypes and functions are namespace protected.
Every public Subversion symbol name begins with svn_, followed by a short code for the library in
which the symbol is defined (such aswe, cl i ent, fs, etc.), followed by a single underscore (_) and
then the rest of the symbol name. Semi-public functions (used among source files of a given library but

139

Developer Information

not by code outside that library, and found inside the library directories themselves) differ from this
naming scheme in that instead of a single underscore after the library code, they use a double underscore
(_). Functions that are private to a given source file have no special prefixing, and are declared
stati c. Of course, a compiler isn't interested in these naming conventions, but they definitely help to
clarify the scope of a given function or datatype.

The Apache Portable Runtime Library

Along with Subversion's own datatype, you will see many references to datatypes that begin with
apr _—symbols from the Apache Portable Runtime (APR) library. APR is Apache's portability library,
originally carved out of its server code as an attempt to separate the OS-specific bits from the OS-
independent portions of the code. The result was alibrary that provides a generic API for performing op-
erations that differ mildly—or wildly—from OS to OS. While Apache HTTP Server was obviously the
first user of the APR library, the Subversion devel opers immediately recognized the value of using APR
as well. This means that there are practically no OS-specific code portions in Subversion itself. Also, it
means that the Subversion client compiles and runs anywhere that the server does. Currently thislist in-
cludes all flavors of Unix, Win32, BeOS, OS2, and Mac OS X.

In addition to providing consistent implementations of system calls that differ across operating systems,
36 APR gives Subversion immediate access to many custom datatypes, such as dynamic arrays and hash
tables. Subversion uses these types extensively throughout the codebase. But perhaps the most pervasive
APR datatype, found in nearly every Subversion APl prototype, is the apr_pool_t—the APR memory
pool. Subversion uses pools internally for all its memory allocation needs (unless gn externa library re-
quires a different memory management schema for data passed through its API), " and while a person
coding against the Subversion APIs is not required to do the same, they are required to provide pools to
the API functions that need them. This means that users of the Subversion APl must also link against
APR, must call apr _initialize() toinitialize the APR subsystem, and then must acquire a pool
for use with Subversion API calls. See the section called “Programming with Memory Pools’ for more
information.

URL and Path Requirements

With remote version control operation as the whole point of Subversion's existence, it makes sense that
some attention has been paid to internationalization (i18n) support. After al, while “remote” might
mean “across the office”, it could just as well mean “across the globe.” To facilitate this, all of Subver-
sion's public interfaces that accept path arguments expect those paths to be canonicalized, and encoded
in UTF-8. This means, for example, that any new client binary that drives the libsvn_client interface
needs to first convert paths from the locale-specific encoding to UTF-8 before passing those paths to the
Subversion libraries, and then re-convert any resultant output paths from Subversion back into the lo-
cale's encoding before using those paths for non-Subversion purposes. Fortunately, Subversion provides
a suite of functions (see subver si on/ i ncl ude/ svn_ut f . h) that can be used by any program to
do these conversions.

Also, Subversion APIs require all URL parameters to be properly URI-encoded. So, instead of passing
file:///home/usernane/ My File.txt astheURL of afilenamedMy Fil e. t xt, you need
to passfile:///home/usernane/ My%20Fi | e. t xt. Again, Subversion supplies helper func-
tions that your application can use—svn_pat h_uri _encode and svn_pat h_uri _decode, for
URI encoding and decoding, respectively.

Using Languages Other than C and C++

If you are interested in using the Subversion libraries in conjunction with something other than a C pro-
gram—say a Python script or Java application—Subversion has some initial support for this viathe Sim-
plified Wrapper and Interface Generator (SWIG). The SWIG bindings for Subversion are located in
subver si on/ bi ndi ngs/ swi g and are slowly maturing into a usable state. These bindings allow

36subversion uses ANSI system calls and datatypes as much as possible.
37Neon and Berkeley DB are examples of such libraries.

140

Developer Information

you to call Subversion API functions indirectly, using wrappers that translate the datatypes native to
your scripting language into the datatypes needed by Subversion's C libraries.

There is an obvious benefit to accessing the Subversion APIs via a language binding—simplicity. Gen-
erally speaking, languages such as Python and Perl are much more flexible and easy to use than C or
C++. The sort of high-level datatypes and context-driven type checking provided by these languages are
often better at handling information that comes from users. As you know, only a human can botch up the
input to a program as well as they do, and the scripting-type language simply handle that misinformation
more gracefully. Of course, often that flexibility comes at the cost of performance. That is why using a
tightly-optimized, C-based interface and library suite, combined with a powerful, flexible binding lan-

guage is so appealing.

Let's look at an example that uses Subversion's Python SWIG bindings. Our example will do the same
thing as our last example. Note the differencein size and complexity of the function thistime!

Example 8.2. Using the Repository Layer with Python

fromsvn inmport fs
i mport os.path

def crawl _filesystemdir (root, directory, pool):
"""Recursively crawml DI RECTORY under ROOT in the filesystem and return
alist of all the paths at or bel ow DI RECTORY. Use POOL for all
all ocations."""

CGet the directory entries for Dl RECTORY.
entries = fs.dir_entries(root, directory, pool)

Initialize our returned list with the directory path itself.
paths = [directory]

Loop over the entries
nanes = entries. keys()
for nane in nanes:
Calculate the entry's full path.
full _path = os. path.oin(basepath, nane)

If the entry is a directory, recurse. The recursion
alist with the entry and all its children, which we
our running list of paths.
if fs.is dir(fsroot, full_path, pool):
subpaths = crawl _filesystemdir(root, full_path, pool)
pat hs. ext end(subpat hs)

return

will
will add to

Else, it is afile, so add the entry's full path to the FILES |ist.
el se:
pat hs. append(ful | _path)

return paths

An implementation in C of the previous example would stretch on quite a bit longer. The same routine
in C would need to pay close attention to memory usage, and need to use custom datatypes for repre-
senting the hash of entries and the list of paths. Python has hashes and lists (called “dictionaries’ and
“sequences’, respectively) as built-in datatypes, and provides a wonderful selection of methods for oper-
ating on those types. And since Python uses reference counting and garbage collection, users of the lan-
guage don't have to bother themselves with allocating and freeing memory.

In the previous section of this chapter, we mentioned thel i bsvn_cl i ent interface, and how it exists

141

Developer Information

for the sole purpose of simplifying the process of writing a Subversion client. The following is a brief
example of how that library can be accessed via the SWIG bindings. In just a few lines of Python, you
can check out afully functional Subversion working copy!

Example 8.3. A Simple Script to Check Out a Working Copy.

#!/ usr/ bin/env python

i mport sys
fromsvn inport util, _util, _client

def usage():
print "Usage: " + sys.argv[0] + " URL PATH n"
sys. exit(0)

def run(url, path):
Initialize APR and get a POOL.
_util.apr_initialize()
pool = util.svn_pool create(None)

Checkout the HEAD of URL into PATH (silently)
_client.svn_client_checkout (None, None, url, path, -1, 1, None, pool)

Cl eanup our POOL, and shut down APR
util.svn_pool _destroy(pool)
_util.apr_term nate()

if _name__ =="'_ _main__
if len(sys.argv) != 3:
usage()

run(sys.argv[1l], sys.argv[2])

Subversion's language bindings unfortunately tend to lack the level of attention given to the core Sub-
version modules. However, there have been significant efforts towards creating functional bindings for
Python, Perl, and Java. Once you have the SWIG interface files properly configured, generation of the
specific wrappers for all the supported SWIG languages (which currently includes versions of C#, Guile,
Java, Mzscheme, OCaml, Perl, PHP, Python, Ruby, and Tcl) should theoretically be trivial. Still, some
extra programming is required to compensate for complex APIs that SWIG needs some help generaliz-
ing. For more information on SWIG itself, see the project'swebsiteat ht t p: / / www. swi g. org/ .

Inside the Working Copy Administration Area

As we mentioned earlier, each directory of a Subversion working copy contains a special subdirectory
called . svn which houses administrative data about that working copy directory. Subversion uses the
informationin. svn to keep track of thingslike:

» Which repository location(s) are represented by the files and subdirectories in the working copy di-
rectory.

* What revision of each of those files and directories are currently present in the working copy.

» Any user-defined properties that might be attached to those files and directories.

* Pristine (un-edited) copies of the working copy files.

142

Developer Information

While there are several other bits of data stored in the . svn directory, we will examine only a couple of
the most important items.

The Entries File

Perhaps the single most important file in the . svn directory istheent ri es file. The entriesfileis an
XML document which contains the bulk of the administrative information about a versioned resource in
a working copy directory. It is this one file which tracks the repository URLS, pristine revision, file
checksums, pristine text and property timestamps, scheduling and conflict state information, last-known
commit information (author, revision, timestamp), local copy history—practically everything that a Sub-
version client isinterested in knowing about a versioned (or to-be-versioned) resource!

Comparing the Administrative Areas of Subversion and CVS

A glance inside the typical . svn directory turns up a bit more than what CVS maintains in its CVS ad-
ministrative directories. Theent r i es file contains XML which describes the current state of the work-
ing copy directory, and basically serves the purposes of CVSs Entri es, Root , and Reposi t ory
files combined.

The following is an example of an actual entriesfile:

Example 8.4. Contentsof a Typical . svn/ entri es File

<?xm version="1.0" encodi ng="utf-8"?>
<wc-entries
xm ns="svn: ">
<entry
comitted-rev="1"
nane="svn:this dir"
conmi tt ed- dat e="2002- 09- 24T17: 12: 44. 064475Z"
url ="http://svn.red-bean. conftests/.greek-repo/ A/ D'

ki nd="dir"
revision="1"/>
<entry

comm tted-rev="1"

name="gamm"

text-time="2002-09-26T21: 09: 02. 000000Z"
commi tt ed- dat e="2002- 09- 24T17: 12: 44. 064475Z"
checksune" QSE4AvWI9ZMICc M/ 7/ +YKXQ=="

kind="file"

prop-tinme="2002-09-26T21: 09: 02. 000000Z2"/ >
<entry

nane="zet a"

kind="file"

schedul e="add"
revision="0"/>
<entry

url ="http://svn.red-bean. comtests/. greek-repo/ A/ B/ del ta"
nane="del t a"

ki nd="file"

schedul e="add"

revi sion="0"/>

<entry

nane="G'

ki nd="dir"/>
<entry

143

Developer Information

nanme="H'

ki nd="di r"

schedul e="del ete"/ >
</wc-entri es>

As you can see, the entries file is essentially a list of entries. Each ent ry tag represents one of three
things: the working copy directory itself (called the “this directory” entry, and noted as having an empty
value for its nane attribute), a file in that working copy directory (noted by having its ki nd attribute
setto"fil e"), or asubdirectory in that working copy (ki nd hereissetto " di r"). Thefilesand sub-
directories whose entries are stored in this file are either already under version control, or (asin the case
of the file named zet a above) are scheduled to be added to version control when the user next commits
this working copy directory's changes. Each entry has a unique name, and each entry has a node kind.

Developers should be aware of some specia rules that Subversion uses when reading and writing its
ent ri es files. While each entry has arevision and URL associated with it, note that not every ent ry
tag in the sample file has explicit r evi si on or ur | attributes attached to it. Subversion allows entries
to not explicitly store those two attributes when their values are the same as (in ther evi si on case) or
trivially calculable from 38 (intheur | case) the data stored in the “this directory” entry. Note also that
for subdirectory entries, Subversion stores only the crucia attributes—name, kind, url, revision, and
schedule. In an effort to reduce duplicated information, Subversion dictates that the method for deter-
mining the full set of information about a subdirectory is to traverse down into that subdirectory, and
read the “this directory” entry from itsown . svn/ ent ri es file. However, areference to the subdirec-
tory iskept inits parent'sent ri es file, with enough information to permit basic versioning operations
in the event that the subdirectory itself is actually missing from disk.

Pristine Copies and Property Files

As mentioned before, the . svn directory aso holds the pristine “text-base” versions of files. Those can
be found in . svn/t ext - base. The benefits of these pristine copies are multiple—network-free
checks for local modifications and difference reporting, network-free reversion of modified or missing
files, smaller transmission of changes to the server—but comes at the cost of having each versioned file
stored at least twice on disk. These days, this seems to be a negligible penalty for most files. However,
the situation gets uglier as the size of your versioned files grows. Some attention is being given to mak-
ing the presence of the “text-base” an option. Ironically though, it is as your versioned files sizes get
larger that the existence of the “text-base” becomes more crucial—who wants to transmit a huge file
across a network just because they want to commit atiny changetoit?

Similar in purpose to the “text-base” files are the property files and their pristine “prop-base” copies, lo-
cated in . svn/ props and . svn/ prop- base respectively. Since directories can have properties,
too, thereareaso . svn/ di r- props and. svn/ di r - pr op- base files. Each of these property files
(“working” and “base” versions) uses a ssimple “hash-on-disk” file format for storing the property names
and values.

WebDAV

WebDAV (shorthand for “Web-based Distributed Authoring and Versioning”) is an extension of the
standard HTTP protocol designed to make the web into a read/write medium, instead of the basically
read-only medium that exists today. The theory is that directories and files can be shared—as both read-
able and writable objects—over the web. RFCs 2518 and 3253 describe the WebDAV/DeltaV exten-
sions to HTTP, and are avalable (along with a lot of other useful information) at
http://ww. webdav. org/.

A number of operating system file browsers are already able to mount networked directories using Web-
DAV. On Win32, the Windows Explorer can browse what it calls WebFolders (which are just Web-

38That is, the URL for the entry is the same as the concatenation of the parent directory's URL and the entry's name.

144

Developer Information

DAV-ready network locations) as if they were regular shared folders. Mac OS X also has this capahility,
as do the Nautilus and Konqueror browsers (under GNOME and KDE, respectively).

How does al of this apply to Subversion? The mod_dav_svn Apache module uses HTTP, extended by
WebDAV and DeltaV, as one of its network protocols. Subversion uses mod_dav_svn to map between
Subversion's versioning concepts and those of RFCs 2518 and 3253.

For a more thorough discussion of WebDAV, how it works, and how Subversion uses it, see
Appendix C, WebDAV and Autoversioning. Among other things, that appendix discusses the degree to
which Subversion adheres to the generic WebDAV specification, and how that affects interoperability
with generic WebDAYV clients.

Programming with Memory Pools

Almost every developer who has used the C programming language has at some point sighed at the
daunting task of managing memory usage. Allocating enough memory to use, keeping track of those al-
locations, freeing the memory when you no longer need it—these tasks can be quite complex. And of
course, failure to do those things properly can result in a program that crashes itself, or worse, crashes
the computer. Fortunately, the APR library that Subversion depends on for portability provides the
apr_pool_t type, which represents a pool from which the application may allocate memory.

A memory pool is an abstract representation of a chunk of memory allocated for use by a program.
Rather than requesting memory directly from the OS using the standard nal | oc() and friends, pro-
grams that link against APR can simply request that a pool of memory be created (using the
apr _pool _create() function). APR will alocate a moderately sized chunk of memory from the
OS, and that memory will be instantly available for use by the program. Any time the program needs
some of the pool memory, it uses one of the APR pool API functions, like apr _pal | oc(), which re-
turns a generic memory location from the pool. The program can keep requesting bits and pieces of
memory from the pool, and APR will keep granting the requests. Pools will automatically grow in size
to accommodate programs that request more memory than the original pool contained, until of course
there is no more memory available on the system.

Now, if this were the end of the pool story, it would hardly have merited special attention. Fortunately,
that's not the case. Pools can not only be created; they can aso be cleared and destroyed, using
apr_pool clear() andapr_pool destroy() respectively. This gives developers the flexibil-
ity to allocate severa—or several thousand—things from the pool, and then clean up all of that memory
with a single function call! Further, pools have hierarchy. Y ou can make “subpools’ of any previously
created pool. When you clear a pool, all of its subpools are destroyed; if you destroy a pool, it and its
subpools are destroyed.

Before we go further, devel opers should be aware that they probably will not find many calls to the APR
pool functions we just mentioned in the Subversion source code. APR pools offer some extensibility
mechanisms, like the ability to have custom “user data” attached to the pool, and mechanisms for regis-
tering cleanup functions that get called when the pooal is destroyed. Subversion makes use of these ex-
tensions in a somewhat non-trivial way. So, Subversion supplies (and most of its code uses) the wrapper
functionssvn_pool create(),svn_pool clear(),andsvn_pool destroy().

While pools are helpful for basic memory management, the pool construct really shines in looping and
recursive scenarios. Since loops are often unbounded in their iterations, and recursions in their depth,
memory consumption in these areas of the code can become unpredictable. Fortunately, using nested
memory pools can be a great way to easily manage these potentially hairy situations. The following ex-
ample demonstrates the basic use of nested pools in a situation that is fairly common—recursively
crawling a directory tree, doing some task to each thing in the tree.

Example 8.5. Effective Pool Usage

145

Developer Information

/* Recursively crawl over DI RECTORY, adding the paths of all its file
children to the FILES array, and doing sone task to each path
encountered. Use POOL for the all tenporary allocations, and store
the hash paths in the sanme pool as the hash itself is allocated in. */

static apr_status_t

craw _dir (apr_array_header _t *files,

const char *directory,
apr _pool t *pool)

apr_pool _t *hash_pool = files->pool; [* array pool */

apr _pool _t *subpool = svn_pool _create (pool); /* iteration pool */
apr_dir_t *dir;

apr_finfo_t finfo;

apr_status_t apr_err;

apr_int32_t flags = APR_FINFO TYPE | APR_FI NFO_NAME;

apr_err = apr_dir_open (&dir, directory, pool);
if (apr_err)
return apr_err;

/* Loop over the directory entries, clearing the subpool at the top of
each iteration. */
for (apr_err = apr_dir_read (& info, flags, dir);
apr_err == APR_SUCCESS;
{ apr_err = apr_dir_read (& info, flags, dir))

const char *chil d_pat h;

/* Clear the per-iteration SUBPOOL. */
svn_pool clear (subpool);

/* Skip entries for "this dir" ('.') and its parent ('.."). */
if (finfo.filetype == APR DR

if (finfo.name[0] == "."
&& (finfo.name[1l] == '"\0
|| (finfo.nane[1] ==".' && finfo.nane[2] == "\0")))
conti nue;

}

/* Build CH LD PATH from DI RECTORY and FI NFO nane. */
child path = svn_path join (directory, finfo.nanme, subpool);

/* Do sone task to this encountered path. */
do_some_task (child_path, subpool);

/* Handl e subdirectories by recursing into them passing SUBPOCL
as the pool for tenporary allocations. */
if (finfo.filetype == APR DI R
{

_err =crawl _dir (files, child_path, subpool);
(apr_err)
eturn apr_err;

apr
i f

r

}

/* Handle files by adding their paths to the FILES array. */
else if (finfo.filetype == APR_REG
{
/* Copy the file's path into the FILES array's pool. */
child_path = apr_pstrdup (hash_pool, child_path);

/[* Add the path to the array. */
(*((const char **) apr_array_push (files))) = child_path;

146

Developer Information

}

/* Destroy SUBPOOL. */
svn_pool destroy (subpool);

/* Check that the |oop exited cleanly. */
if (apr_err)
return apr_err;

/* Yes, it exited cleanly, so close the dir. */
apr_err = apr_dir_close (dir);
if (apr_err)

return apr_err;

return APR_SUCCESS;

The previous example demonstrates effective pool usage in both looping and recursive situations. Each
recursion begins by making a subpool of the pool passed to the function. This subpool is used for the
looping region, and cleared with each iteration. The result is memory usage is roughly proportional to
the depth of the recursion, not to total number of file and directories present as children of the top-level
directory. When the first call to this recursive function finally finishes, there is actually very little data
stored in the pool that was passed to it. Now imagine the extra complexity that would be present if this
functionhadtoal | oc() andf ree() every single piece of data used!

Pools might not be ideal for every application, but they are extremely useful in Subversion. As a Subver-
sion developer, you'll need to grow comfortable with pools and how to wield them correctly. Memory
usage bugs and bloating can be difficult to diagnose and fix regardless of the API, but the pool construct
provided by APR has proven atremendously convenient, time-saving bit of functionality.

Contributing to Subversion

The official source of information about the Subversion project is, of course, the project's website at
http://subversion.tigris.org/. Thereyou can find information about getting access to the
source code and participating on the discussion lists. The Subversion community aways welcomes new
members. If you are interested in participating in this community by contributing changes to the source
code, here are some hints on how to get started.

Join the Community

The first step in community participation is to find a way to stay on top of the latest happenings. To do
this most effectively, you will want to subscribe to the main developer discussion list
(<dev@ubversion.tigris.org>) and commit mail list
(ssvn@ubversi on. tigris. or g>). By following these lists even loosely, you will have access to
important design discussions, be able to see actual changes to Subversion source code as they occur, and
be able to witness peer reviews of those changes and proposed changes. These email based discussion
lists are the primary communication media for Subversion development. See the Mailing Lists section of
the website for other Subversion-related lists you might be interested in.

But how do you know what needs to be done? It is quite common for a programmer to have the greatest
intentions of helping out with the development, yet be unable to find a good starting point. After all, not
many folks come to the community having already decided on a particular itch they would like to
scratch. But by watching the developer discussion lists, you might see mentions of existing bugs or fea
ture requests fly by that particularly interest you. Also, a great place to look for outstanding, unclaimed
tasks is the Issue Tracking database on the Subversion website. There you will find the current list of
known bugs and feature requests. If you want to start with something small, look for issues marked as

147

Developer Information

bite-sized”.
Get the Source Code

To edit the code, you need to have the code. This means you need to check out aworking copy from the
public Subversion source repository. As straightforward as that might sound, the task can be dightly
tricky. Because Subversion's source code is versioned using Subversion itself, you actually need to
“bootstrap” by getting a working Subversion client via some other method. The most common methods
include downloading the latest binary distribution (if such is available for your platform), or download-
ing the latest source tarball and building your own Subversion client. If you build from source, make
sureto read the | NSTALL filein the top level of the source tree for instructions.

After you have a working Subversion client, you are now poised to checkout aworking cggy of the Sub-
version source repository fromht t p: / / svn. col | ab. net/repos/ svn/ trunk/:

$ svn checkout http://svn.collab.net/repos/svn/trunk subversion
A HACKI NG

A | NSTALL

A README

A autogen. sh

A buil d. conf

The above command will checkout the bleeding-edge, latest version of the Subversion source code into
a subdirectory named subver si on in your current working directory. Obviously, you can adjust that
last argument as you see fit. Regardless of what you call the new working copy directory, though, after
this operation completes, you will now have the Subversion source code. Of course, you will still need
to fetch a few helper libraries (apr, apr-util, etc.)—see the | NSTALL file in the top level of the working
copy for details.

Become Familiar with Community Policies

Now that you have aworking copy containing the latest Subversion source code, you will most certainly
want to take a cruise through the HACKI NGfile in that working copy's top-level directory. The HACK-
I NGfile contains general instructions for contributing to Subversion, including how to properly format
your source code for consistency with the rest of the codebase, how to describe your proposed changes
with an effective change log message, how to test your changes, and so on. Commit privileges on the
Subversion source repository are earned—a government by meritocracy. ™~ The HACKING fileisan in-
valuable resource when it comes to making sure that your proposed changes earn the praises they de-
serve without being rejected on technicalities.

Make and Test Your Changes

With the code and community policy understanding in hand, you are ready to make your changes. It is
best to try to make smaller but related sets of changes, even tackling larger tasks in stages, instead of
making huge, sweeping modifications. Your proposed changes will be easier to understand (and there-
fore easier to review) if you disturb the fewest lines of code possible to accomplish your task properly.
After making each set of proposed changes, your Subversion tree should be in a state in which the soft-
ware compiles with no warnings.

Subversion has a fairly thorough 4 regression test suite, and your proposed changes are expected to not
cause any of those tests to fail. By running make check (in Unix) from the top of the source tree, you

39Note that the URL checked out in the example above ends not with svn, but with a subdirectory thereof called t r unk. See our
iscussion of Subversion's branching and tagging model for the reasoning behind this.
hile this may superficially appear as some sort of elitism, this “earn your commit privileges’ notion is about
efficiency—whether it costs more in time and effort to review and apply someone else's changes that are likely to be safe and use-
ful, versus the potential costs of undoing changes that are dangerous.

148

Developer Information

can sanity-check your changes. The fastest way to get your code contributions rejected (other than fail-
ing to supply a good log message) is to submit changes that cause failurein the test suite.

In the best-case scenario, you will have actually added appropriate tests to that test suite which verify
that your proposed changes actually work as expected. In fact, sometimes the best contribution a person
can make is solely the addition of new tests. You can write regression tests for functionality that cur-
rently works in Subversion as a way to protect against future changes that might trigger failure in those
areas. Also, you can write new tests that demonstrate known failures. For this purpose, the Subversion
test suite allows you to specify that a given test is expected to fail (called an XFAI L), and so long as
Subversion failsin the way that was expected, atest result of XFAI L itself is considered a success. Ulti-
mately, the better the test suite, the less time wasted on diagnosing potentially obscure regression bugs.

Donate Your Changes

After making your modifications to the source code, compose a clear and concise log message to de-
scribe those changes and the reasons for them. Then, send an email to the devel opers list containing your
log message and the output of svn diff (from the top of your Subversion working copy). If the commu-
nity members consider your changes acceptable, someone who has commit privileges (permission to
make new revisions in the Subversion source repository) will add your changes to the public source code
tree. Recall that permission to directly commit changes to the repository is granted on merit—if you
demonstrate comprehension of Subversion, programming competency, and a “team spirit”, you will
likely be awarded that permission.

Ly ou mi ght want to grab some popcorn. “Thorough”, in this instance, translates to somewhere in the neighborhook of thirty min-
utes of non-interactive machine churn.

149

Chapter 9. Subversion Complete
Reference

This chapter is intended to be a complete reference to using Subversion. This includes the command line
client (svn) and all its subcommands, as well as the repository administration programs (svnadmin and
svnlook) and their respective subcommands.

The Subversion Command Line Client: svn

To use the command line client, you type svn, the subcommand you wish to use 42, and any switches or
targets that you wish to operate on—there is no specific order that the subcommand and the switches
must appear in. For example, all of the following are valid ways to use svn status:

$ svn -v status
$ svn status -v
$ svn status -v nmyfile

Y ou can find many more examples of how to use most client commands in Chapter 3, Guided Tour and
commands for managing properties in the section called “Properties’.

svn Switches

While Subversion has different switches for its subcommands, all switches are global—that is, each
switch is guaranteed to mean the same thing regardless of the subcommand you use it with. For exam-
ple, - - ver bose (- v) adways means “verbose output”, regardless of the subcommand you use it with.

- -aut o- props
Enable auto-props, overriding the enabl e- aut o- pr ops directiveintheconfi g file.

--config-dir DR
Instructs Subversion to read configuration information from the specified directory instead of the
default location (. subver si on in the user's home directory).

--diff-cnd CVD
Specifies an externa program to use to show differences between files. When svn diff isinvoked, it
uses Subversion's internal diff engine, which provides unified diffs by default. If you want to use an
external diff program, use - - di f f - cnd. You can pass switches to the diff program with the -
- ext ensi ons switch (more on that later in this section).

--di ff3-cnmd CVD
Specifies an external program to use to merge files.

--dry-run
Goes through al the motions of running a command, but makes no actual changes—either on disk
or in the repository.

--editor-cnmd CVD
Specifies an external program to use to edit alog message or a property value.

- -encodi ng ENC
Tells Subversion that your commit message is encoded in the charset provided. The default is your
42Yes, yes, you don't need a subcommand to use the - - ver si on switch, but we'll get to that in just a minute.

150

Subversion Complete Reference

operating system's native locale, and you should specify the encoding if your commit messageisin
any other encoding.

- - ext ensi ons (- x) ARGS
Specifies an argument or arguments that Subversion should pass to an external diff command when
providing differences between files. If you wish to pass multiple arguments, you must enclose all of
them in quotes (for example, svn diff --diff-cmd /usr/bin/diff -x " -b -E"). This switch can only be
used if you also passthe - - di f f - cnd switch.

--file(-F)Fl LENAME
Uses the contents of the file passed as an argument to this switch for the specified subcommand.

--force
Forces a particular command or operation to run. There are some operations that Subversion will
prevent you from doing in normal usage, but you can pass the force switch to tell Subversion “I
know what I'm doing as well as the possible repercussions of doing it, so let me at 'em”. This switch
is the programmatic equivalent of doing your own electrical work with the power on—if you don't
know what you're doing, you're likely to get a nasty shock.

--force-1og

Forces a suspicious parameter passed to the - - message (-m) or --fi |l e (- F) options to be ac-
cepted as valid. By default, Subversion will produce an error if parameters to these options look like
they might instead be targets of the subcommand. For example, if you pass a versioned file's path to
the--fil e (- F) option, Subversion will assume you've made a mistake, that the path was instead
intended as the target of the operation, and that you simply failed to provide some unver-
other—sioned—file as the source of your log message. To assert your intent and override these
types of errors, passthe- - f or ce- | og option to commands that accept |og messages.

--help(-hor-?)
If used with one or more subcommands, shows the built-in help text for each subcommand. If used
alone, it displays the general client help text.

--ignore-ancestry
Ignore ancestry when calculating differences (rely on path contents alone).

--increnental
Prints output in aformat suitable for concatenation.

- -message (- m) MESSAGE
Indicates that you will specify a commit message on the command line, following this switch. For
example:

$ svn commit -m "They don't make Sunday."

- - newARG
Uses ARG as the newer target.

- - no- aut h-cache
Prevents caching of authentication information (e.g. username and password) in the Subversion ad-
ministrative directories.

- - no- aut o- pr ops
Disable auto-props, overriding the enabl e- aut o- pr ops directiveintheconfi g file.

--no-di ff-del eted
Prevents Subversion from printing differences for deleted files. The default behavior when you re-
move afileisfor svn diff to print the same differences that you would see if you had left the file but
removed al the content.

151

Subversion Complete Reference

--no-ignore
Shows files in the status listing that would normally be omitted since they match a pattern in the
svn:ignore property. See the section called “ Config” for more information.

--non-interactive
In the case of an authentication failure, or insufficient credentias, prevents prompting for creden-
tials (e.g. username or password). Thisis useful if you're running Subversion inside of an automated
script and it's more appropriate to have Subversion fail than to prompt for more information.

--non-recursive (-N)
Stops a subcommand from recursing into subdirectories. Most subcommands recurse by default, but
some subcommands—usually those that have the potentia to remove or undo your local modifica
tions—do not.

--notice-ancestry
Pay attention to ancestry when cal culating differences.

--ol d ARG
Uses ARG as the ol der target.

- - passwor d PASS
Indicates that you are providing your password for authentication on the command line—otherwise,
if it is needed, Subversion will prompt you for it.

--quiet (-q)
Requests that the client print only essential information while performing an operation.

--recursive (-R
Makes a subcommand recurse into subdirectories. Most subcommands recurse by defaullt.

--rel ocate FROM TO [PATH. . .]
Used with the svn switch subcommand, changes the location of the repository that your working
copy references. This is useful if the location of your repository changes and you have an existing
working copy that you'd like to continue to use. See svn switch for an example.

--revision(-r) REV
Indicates that you're going to supply a revision (or range of revisions) for a particular operation.
Y ou can provide revision numbers, revision keywords or dates (in curly braces), as arguments to the
revision switch. If you wish to provide arange of revisions, you can provide two revisions separated
by acolon. For example:

svn log -r 1729

svn log -r 1729: HEAD

svn log -r 1729:1744

svn log -r {2001-12-04}:{2002-02-17}
svn log -r 1729:{2002-02-17}

BAPPAP

See the section called “ Revision Keywords’ for more information.

--revprop
Operates on a revision property instead of a Subversion property specific to afile or directory. This
switch requires that you also pass a revision with the - - r evi si on (- r) switch. See the section
called “Unversioned Properties’ for more details on unversioned properties.

- - show updat es (- u)
Causes the client to display information about which files in your working copy are out-of-date.
This doesn't actually update any of your files—it just shows you which files will be updated if you

152

Subversion Complete Reference

run svn update.

- - st op-on- copy
Causes a Subversion subcommand which is traversing the history of a versioned resource to stop
harvesting that historical information when a copy—that is, alocation in history where that resource
was copied from another location in the repository—is encountered.

--strict
Causes Subversion to use strict semantics, a notion which is rather vague unless talking about spe-
cific subcommands.

--targets FI LENAVE
Tells Subversion to get the list of filesthat you wish to operate on from the filename you providein-
stead of listing al the files on the command line.

- - user name NAME
Indicates that you are providing your username for authentication on the command line—otherwise,
if it is needed, Subversion will prompt you for it.

--verbose (-v)
Requests that the client print out as much information as it can while running any subcommand.
This may result in Subversion printing out additiona fields, detailed information about every file, or
additional information regarding its actions.

--version
Prints the client version info. This information not only includes the version number of the client,
but also a listing of al repository access modules that the client can use to access a Subversion
repository.

--xm
Prints output in XML format.

svn Subcommands

153

Subversion Complete Reference

Name

svn add -- Adds files and directories
svn add

Synopsis

svn add PATH. ..

Description

Adds files and directories to your working copy and schedules them for addition to the repository. They
will be uploaded and added to the repository on your next commit. If you add something and change
your mind before committing, you can unschedule the addition using svn revert.

Alternate Names

None

Changes

Working Copy

Switches

--targets FI LENAME
--non-recursive (-N)

--quiet (-q)
--config-dir DIR
- - aut o- props

- - no- aut o- props

Examples

To add afile to your working copy:

$ svn add foo.c
A foo.c

When adding a directory, the default behavior of svn add isto recurse:
$
A
A t est di
A .
A
A

Y ou can add a directory without adding its contents:

154

Subversion Complete Reference

$ svn add --non-recursive otherdir
A otherdir

155

Subversion Complete Reference

Name

svn blame -- Shows author and revision information in-line for the specified files or URLSs.
svn blame

Synopsis

svn bl ame TARGET. ..

Description

Shows author and revision information in-line for the specified files or URLs. Each line of text is anno-
tated at the beginning with the author (username) and the revision number for the last change to that
line.

Alternate Names

praise, annotate, ann

Changes

Nothing

Accesses Repository

Yes

Switches

--revision (-r) REV

--user name USER

- - password PASS

- - no- aut h- cache

--non-interactive

--config-dir DIR

Examples

If you want to see blame annotated source for readme.txt in your test repository:
$ svn blame http://svn.red-bean. com repos/test/readne.txt

3 sally This is a README file.
5 harry You should read this.

156

Subversion Complete Reference

Name

svn cat -- Outputs the contents of the specified files or URLSs.
svn cat

Synopsis

svn cat TARGET...

Description

Outputs the contents of the specified files or URLSs. For listing the contents of directories, see svn list.
Alternate Names

None

Changes

Nothing

Accesses Repository
Yes

Switches

--revision (-r) REV
--user name USER

- - password PASS

- - no- aut h- cache
--non-interactive
--config-dir DIR
Examples

If you want to view readme.txt in your repository without checking it out:

$ svn cat http://svn.red-bean.con repos/test/readne. txt
This is a READMVE file.
You should read this.

Tip

If your working copy is out of date (or you have local modifications) and you want to see the
HEAD revision of afile in your working copy, svn cat will automatically fetch the HEAD revi-
sion when you give it a path:

$ cat foo.c
This file is in ny |ocal working copy
and has changes that |'ve nmade.

157

Subversion Complete Reference

$ svn cat foo.c
Latest revision fresh fromthe repository!

158

Subversion Complete Reference

Name

svn checkout -- Checks out aworking copy from arepository.
svn checkout

Synopsis

svn checkout URL... [PATH

Description
Checks out aworking copy from arepository. If PATH is omitted, the basename of the URL will be used

as the destination. If multiple URLSs are given each will be checked out into a sub-directory of PATH,
with the name of the sub-directory being the basename of the URL.

Alternate Names

co

Changes

Creates aworking copy.

Accesses Repository

Yes

Switches

--revision (-r) REV
--quiet (-q)
--non-recursive (-N)
--user name USER

- - password PASS
--no-aut h-cache
--non-interactive
--config-dir DIR

Examples

Check out aworking copy into adirectory called 'mine":

$ svn checkout file:///tnp/repos/test mne
A ninela

A mnelb

Checked out revision 2.

$1s

m ne

Check out 2 different directories into two separate working copies:

$ svn checkout file:///tmp/repos/test file:///tnp/repos/quiz

159

Subversion Complete Reference

A test/a

A test/b

Checked out revision 2.
A quiz/l

A quiz/m

Checked out revision 2.
$1s

qui z test

Check out 2 different directories into two separate working copies, but place both into a directory called
‘working copies:

$ svn checkout file:///tnmp/repos/test file:///tnp/repos/quiz working-copies
A working-copies/test/a

A working-copies/test/b

Checked out revision 2.

A wor ki ng-copi es/ qui z/ 1

A wor ki ng-copi es/ qui z/ m

Checked out revision 2.

$1s

wor ki ng- copi es

If you interrupt a checkout (or something else interrupts your checkout like loss of connectivity, etc.),
you can restart it either by issuing the identical checkout command again, or by updating the incomplete
working copy:

$ svn checkout file:///tnp/repos/test test

A test/a
A test/b
AC

svn: The operation was interrupted
svn: caught SI G NT

$ svn checkout file:///tnp/repos/test test
A test/c

A test/d

~C

svn: The operation was interrupted

svn: caught SI G NT

$ cd test

$ svn update

A test/e

A test/f

Updated to revision 3.

160

Subversion Complete Reference

Name

svn cleanup -- Recursively clean up the working copy.
svn cleanup

Synopsis

svn cl eanup [PATH...]

Description

Recursively clean up the working copy, removing locks resuming unfinished operations. If you ever get
a “working copy locked” error, run this command to remove stale locks and get your working copy into
ausable state again. See Appendix B, Troubleshooting.

If, for some reason, an svn update fails due to a problem running an external diff program (e.g. user in-
put or network failure), pass the - - di f f 3- cnd to alow cleanup to complete any merging with your

external diff program. You can also specify any configuration directory with the --config-dir
switch, but you should need these switches extremely infrequently.

Alternate Names

None

Changes

Working copy

Accesses Repository
No

Switches:

--di ff3-cnmd CMVMD

--config-dir DR

Examples

WEell, there's not much to the examples here as svn cleanup generates no output. If you pass no PATH,

“. " isused.

$ svn cl eanup

$ svn cl eanup / path/to/ worKki ng-copy

161

Subversion Complete Reference

Name

svn commit -- Send changes from your working copy to the repository.
svn commit

Synopsis

svn conmit [PATH. ..]

Description

Send changes from your working copy to the repository. If you do not supply alog message with your
commit by using either the- - fi | e or - - message switch, svn will launch your editor for you to com-
pose a commit message. Seethe edi t or - cnd section in the section called “ Config”.

Tip

If you begin a commit and Subversion launches your editor to compose the commit message,
you can still abort without committing your changes. If you want to cancel your commit, just
quit your editor without saving your commit message and Subversion will prompt you to either
abort the commit, continue with no message, or edit the message again.

Alternate Names

ci (short for “check in” not “co”, which is short for “checkout™)
Changes

Working copy, repository

Accesses Repository

Yes

Switches

--message (-m TEXT
--file (-F) FILE
--quiet (-q)
--non-recursive (-N)
--targets FlI LENAME
--force-1o0g

--user nanme USER

- - password PASS
--no-aut h-cache
--non-interactive
--encodi ng ENC
--config-dir DIR

Examples

Commit a simple modification to a file with the commit message on the command line and an implicit
target of your current directory (. "):

162

Subversion Complete Reference

$ svn commit -m "added howto section."
Sendi ng a

Transmitting file data .

Committed revision 3.

Commit a modification to the file f 00. ¢ (explicitly specified on the command line) with the commit
message in afile named nsg:

$ svn conmit -F nsg foo.c
Sendi ng foo.c
Transmtting file data .
Committed revision 5.

If you want to use afile that's under version control for your commit message with - - f i | e, you need
to passthe- - f or ce- |1 og switch:

$ svn commit --file file_under_vc.txt foo.c
svn: The | og message file is under version control
svn: Log nessage file is a versioned file; use '--force-log'" to override

$ svn commit --force-log --file file_under_vc.txt foo.c
Sendi ng foo.c

Transmtting file data .

Conmitted revision 6.

To commit afile scheduled for deletion:

$ svn commit -m"renoved file 'c'.

Del eti ng c

Committed revision 7.

163

Subversion Complete Reference

Name

svn copy -- Copy afileor directory in aworking copy or in the repository.
svn copy

Synopsis

svn copy SRC DST

Description
Copy afile in a working copy or in the repository. SRC and DST can each be either a working copy
(WC) path or URL:
wWC->WC
Copy and schedule an item for addition (with history).

WC -> URL
Immediately commit a copy of WC to URL.

URL ->WC
Check out URL into WC, and schedule it for addition.

URL -> URL
Complete server-side copy. Thisis usually used to branch and tag.

Note

You can only copy files within a single repository. Subversion does not support cross-
repository copying.

Alternate Names

cp

Changes

Repository if destinationisa URL.

Working copy if destination isaWC path.

Accesses Repository

If source or destination isin the repository, or if needed to look up the source revision number.
Switches

--nmessage (-m TEXT

--file (-F) FILE

--revision (-r) REV

--quiet (-q)
--username USER

164

Subversion Complete Reference

- - password PASS
--no-aut h-cache
--non-interactive
--force-1og
--editor-cnd EDI TOR
--encodi ng ENC
--config-dir DIR

Examples

Copy an item within your working copy (just schedules the copy—nothing goes into the repository until
you commit):

$ svn copy foo.txt bar.txt
A bar . t xt

$ svn status

A + bar .t xt

Copy an item in your working copy to a URL in the repository (an immediate commit, so you must sup-
ply acommit message):

$ svn copy near.txt file:///tnp/repos/test/far-anway.txt -m"Renpte copy."

Commi tted revision 8.

Copy an item from the repository to your working copy (just schedules the copy—nothing goes into the
repository until you commit):

Tip
Thisisthe recommended way to resurrect adead filein your repository!

$ svn copy file:///tnp/repos/test/far-away near-here
A near - here

And finally, copying between two URLS:

$ svn copy file:///tnp/repos/test/far-away file:///tnp/repos/test/over-there -m"r

Committed revision 9.

Tip
This is the easiest way to “tag” a revision in your repository—just svh copy that revision

(usually HEAD) into your tags directory.

$ svn copy file:///tnp/repos/test/trunk file:///tnp/repos/test/tags/0.6.32-prerele

Committed revision 12.

And don't worry if you forgot to tag—you can always specify an older revision and tag anytime:

165

Subversion Complete Reference

$ svn copy -r 11 file:///tnp/repos/test/trunk file:///tnp/repos/test/tags/0.6.32-p

Committed revision 13.

166

Subversion Complete Reference

Name

svn delete -- Delete an item from aworking copy or the repository.
svn delete

Synopsis

svn del ete PATH...

svn del ete URL...

Description

Items specified by PATH are scheduled for deletion upon the next commit. Files (and directories that
have not been committed) are immediately removed from the working copy. The command will not re-
move any unversioned or modified items; use the - - f or ce switch to override this behavior.

Items specified by URL are deleted from the repository via an immediate commit. Multiple URLSs are
committed atomically.

Alternate Names

del, remove, rm

Changes

Working copy if operating on files, Repository if operating on URLS
Accesses Repository

Only if operating on URLS

Switches

--force

--force-1og
--nmessage (-nm) TEXT
--file (-F) FILE
--quiet (-q)
--targets Fl LENAME
--usernane USER

- - password PASS

- - no- aut h-cache
--non-interactive
--editor-cnd ED TOR
--encodi ng ENC
--config-dir DIR

Examples

Using svn to delete a file from your working copy merely schedules it to be deleted. When you commiit,
thefile is deleted in the repository.

167

Subversion Complete Reference

$ svn delete myfile

D nyfile

$ svn commit -m"Deleted file "'nyfile ."
Del eti ng nyfile

Transmitting file data .
Conmitted revision 14.

Deleting a URL, however, isimmediate, so you have to supply alog message:

$ svn delete -m"Deleting file "yourfile'" file:///tnp/repos/test/yourfile

Conmitted revision 15.
Here's an example of how to force deletion of afile that has local mods:

$ svn del ete over-there

svn: Attenpting restricted operation for nodified resource
svn: Use --force to override this restriction

svn: 'over-there' has |ocal nodifications

$ svn delete --force over-there
D over -t here

168

Subversion Complete Reference

Name

svn diff -- Display the differences between two paths.
svn diff

Synopsis

svn diff [-r N[J:M] [--old OLD-TGI] [--new NEWTGI] [PATH...]
svn diff -r NNM URL
svn diff [-r N[:M] URL1[@ URL2[@

Description
Display the differences between two paths. The three different ways you can use svn diff are;

svn diff [-r N[:M]] [--old OLD-TGT] [--new NEW-TGT] [PATH...] displays the differences between
OLD TGT and NEW TGT. If PATHs are given, they are treated as relative to OLD- TGT and NEW TGT
and the output is restricted to differences in only those paths. OLD- TGT and NEW TGT may be working
copy paths or URL[@REV] . OLD- TGT defaults to the current working directory and NEW TGT defaults
to OLD- TGT. N defaults to BASE or, if OLD- TGT isaURL, to HEAD. Mdefaults to the current working
version or, if NEW TGT isaURL, to HEAD. svn diff -r N setsthe revision of OLD- TGT to N, svn diff -r
N:M also setsthe revision of NEW TGT to M

svn diff -r N:M URL is shorthand for svn diff -r N:M --old=URL --new=URL.

svn diff [-r N[:M]] URL1[@N] URL2[@M] is shorthand for svn diff [-r N[:M]] --old=URL1 -
-new=URL2.

If TARGET isaURL, thenrevs N and M can be given either viathe- - r evi si on or by using “@" no-
tation as described earlier.

If TARGET isaworking copy path, thenthe - - r evi si on switch means:

--revision N:M
The server compares TARGET@N and TARGET@M

--revision N
The client compares TARGET @N against working copy.

(no --revision)
The client compares base and working copies of TARGET.

If the alternate syntax is used, the server compares URL1 and URL2 at revisions N and Mrespectively. If
either N or Mare omitted, a value of HEAD is assumed.

By default, svn diff ignores the ancestry of files and merely compares the contents of the two files being
compared. If you use - - not i ce- ancest ry, the ancestry of the paths in question will be taken into
consideration when comparing revisions (that is, if you run svn diff on two files with identical contents
but different ancestry you will see the entire contents of the file as having been removed and added

again).

169

Subversion Complete Reference

Alternate Names
di

Changes

Nothing

Accesses Repository

For obtaining differences against anything but BASE revision in your working copy

Switches

--revision (-r) REV
--old OLD TARGET
--new NEW TARGET
--extensions (-x) "ARGS
--non-recursive (-N)
--diff-cmd CVD
--notice-ancestry
--user name USER

- - password PASS
--no-aut h-cache
--non-interactive
--no-di ff-del eted
--config-dir DR

Examples

Compare BASE and your working copy (one of the most popular uses of svn diff):

$ svn diff COW TTERS
| ndex: COWM TTERS

--- COW TTERS (revision 4404)
+++ COW TTERS (wor ki ng copy)

See how your working copy's modifications compare against an older revision:

$ svn diff -r 3900 COW TTERS
I ndex: COWM TTERS

--- COW TTERS (revision 3900)
+++ COMM TTERS (wor ki ng copy)

Compare revision 3000 to revision 3500 using “ @” syntax:

$ svn diff http://svn.collab.net/repos/svn/trunk/ COM TTERS@O000 http://svn.coll ab
I ndex: COWM TTERS

--- COW TTERS (revision 3000)
+++ COW TTERS (revisi on 3500)

170

Subversion Complete Reference

Compare revision 3000 to revision 3500 using range notation (you only pass the one URL in this case):

$ svn diff -r 3000:3500 http://svn.collab.net/repos/svn/trunk/ COM TTERS
| ndex: COWM TTERS

--- COW TTERS (revision 3000)
+++ COW TTERS (revi si on 3500)

Compare revision 3000 to revision 3500 of all filesint r unk using range notation:

$ svn diff -r 3000: 3500 http://svn.collab.net/repos/svn/trunk

Compare revision 3000 to revision 3500 of only threefilesint r unk using range notation:

$ svn diff -r 3000:3500 --old http://svn.collab. net/repos/svn/trunk COW TTERS REA

If you have aworking copy, you can obtain the differences without typing in the long URLS:

$ svn diff -r 3000: 3500 COW TTERS
| ndex: COW TTERS

--- COW TTERS (revision 3000)
+++ COW TTERS (revisi on 3500)

Use--diff-cnd CVD- x to pass arguments directly to the external diff program

$ svn diff --diff-cnd /usr/bin/diff -x "-i -b" COW TTERS

| ndex: COWM TTERS

0al,2
> This is a test

>

171

Subversion Complete Reference

Name

svn export -- Exports a clean directory tree.
svn export

Synopsis

svn export [-r REV] URL [PATH]
svn export PATHL PATH2

Description

The first form exports a clean directory tree from the repository specified by URL, at revision REV if it
is given, otherwise at HEAD, into PATH. If PATH is omitted, the last component of the URL is used for
the local directory name.

The second form exports a clean directory tree from the working copy specified by PATHL into PATH2.
All local changes will be preserved, but files not under version control will not be copied.

Alternate Names

None

Changes

Local disk

Accesses Repository
Only if exporting from a URL
Switches

--revision (-r) REV
--quiet (-q)
--force

--username USER

- - password PASS
--no- aut h-cache
--non-interactive
--config-dir DR

Examples

Export from your working copy (doesn't print every file and directory):

$ svn export a-wc my-export
Export conpl ete.

Export directly from the repository (prints every file and directory):

172

Subversion Complete Reference

$ svn export file:///tnp/repos ny-export
A ny-export/test
A ny-export/quiz

Ekported revision 15.

173

Subversion Complete Reference

Name

svn help -- Help!

svn help

Synopsis

svn hel p [SUBCOMVAND. . .]

Description

Thisisyour best friend when you're using Subversion and this book isn't within reach!
Alternate Names

?,h

Changes

Nothing

Accesses Repository

No

Switches

--version
--quiet (-0q)

174

Subversion Complete Reference

Name

svn import -- Recursively commit a copy of PATH to URL.
svn import

Synopsis

svn inport [PATH URL

Description

Recursively commit a copy of PATH to URL. If PATH is omitted “. ” is assumed. Parent directories are
created in the repository as necessary.

Alternate Names

None

Changes

Repository

Accesses Repository

Yes

Switches

--nmessage (-m TEXT
--file (-F) FILE
--quiet (-Q)
--non-recursive (-N)
- -user name USER

- - password PASS

- - no- aut h- cache
--non-interactive
--force-1og
--editor-cnmd EDI TOR
--encodi ng ENC
--config-dir DR

- - aut o- props

- - no- aut o- props

Examples

Thisimports the local directory mypr oj into the root of your repository:

$ svn inmport -m"New inport" nyproj http://svn.red-bean. com repos/test
Addi ng nmypr oj / sanmpl e. t xt

"I;fansm'tting file data
Conmitted revision 16.

175

Subversion Complete Reference

This imports the local directory mypr oj into t runk/vendors in your repository. The directory
t runk/ vendor s need not exist before you import into it—svn import will recursively creste directo-
riesfor you:

$ svn inport -m"New inport" nyproj \
http://svn. red-bean. com repos/test/trunk/vendors/ nyproj
Addi ng nypr oj / sanmpl e. t xt

"I;fansm'tting file data
Conmitted revision 19.

176

Subversion Complete Reference

Name

svninfo -- Print information about PATHSs.
svninfo

Synopsis

svn info [PATH. . .]

Description

Print information about pathsin your working copy, including:

e Pah

* Name

* URL

* Revision

* NodeKind

e Last Changed Author

» Last Changed Revision
e Last Changed Date

» Text Last Updated

e Properties Last Updated

e Checksum

Alternate Names

None

Changes

Nothing

Accesses Repository
No

Switches

--targets FlI LENAME
--recursive (-R
--config-dir DR

177

Subversion Complete Reference

Examples

svn info will show you all the useful information that it has for itemsin your working copy. It will show
information for files:

$ svn info foo.c

Pat h: foo.c

Nane: foo.c

URL: http://svn.red-bean.com repos/test/foo.c

Revi si on: 4417

Node Kind: file

Schedul e: nor nal

Last Changed Author: sally

Last Changed Rev: 20

Last Changed Date: 2003-01-13 16:43:13 -0600 (Mon, 13 Jan 2003)
Text Last Updated: 2003-01-16 21:18:16 -0600 (Thu, 16 Jan 2003)
Properties Last Updated: 2003-01-13 21:50:19 -0600 (Mn, 13 Jan 2003)
Checksum /3L38YwzhT93BW gpdF6Zw==

It will also show information for directories:

$ svn info vendors

Pat h: trunk

URL: http://svn.red-bean.com repos/test/vendors

Revi si on: 19

Node Kind: directory

Schedul e: nor nal

Last Changed Author: harry

Last Changed Rev: 19

Last Changed Date: 2003-01-16 23:21:19 -0600 (Thu, 16 Jan 2003)

178

Subversion Complete Reference

Name

svnlist -- List directory entriesin the repository.
svnlist

Synopsis

svn list [TARCET...]

Description

List each TARGET file and the contents of each TARGET directory as they exist in the repository. If
TARGET isaworking copy path, the corresponding repository URL will be used.

The default TARCET is*“. ", meaning the repository URL of the current working copy directory.

With - - ver bose, the following fields show the status of the item:

* Revision number of the last commit

e Author of the last commit

Size (in bytes)

» Date and time of the last commit

Alternate Names

Is

Changes

Nothing

Accesses Repository
Yes

Switches
--revision (-r) REV
--verbose (-v)
--recursive (-R)
--user name USER

- - password PASS

- - no- aut h-cache
--non-interactive
--config-dir DR
Examples

svn list is most useful if you want to see what files a repository has without downloading a working

179

Subversion Complete Reference

copy:

$ svn list http://svn.red-bean. conlrepos/test/support
READMVE. t xt

| NSTALL

exanpl es/

Like UNIX Is, you can also passthe - - ver bose switch for additional information:

$ svn list --verbose file:///tnp/repos

16 sally 28361 Jan 16 23:18 README. t xt
27 sally 0 Jan 18 15:27 | NSTALL
24 harry Jan 18 11: 27 exanpl es/

For further details, see the section called “svn list”.

180

Subversion Complete Reference

Name

svn log -- Displays commit log messages.
svnlog

Synopsis

svn | og [PATH]

svn log URL [PATH. . .]

Description

The default target is the path of your current directory. If no arguments are supplied, svh log shows the
log messages for all files and directories inside of (and including) the current working directory of your
working copy. You can refine the results by specifying a path, one or more revisions, or any combina-
tion of the two. The default revision range for alocal path is BASE: 1.

If you specify a URL aone, then it prints log messages for everything that the URL contains. If you add
paths past the URL, only messages for those paths under that URL will be printed. The default revision
range for aURL isHEAD: 1.

With - - ver bose, svn log will also print all affected paths with each log message. With - - qui et ,
svn log will not print the log message body itself (thisis compatible with - - ver bose).

Each log message is printed just once, even if more than one of the affected paths for that revision were
explicitly requested. Logs follow copy history by default. Use - - st op- on- copy to disable this be-
havior, which can be useful for determining branch points.

Alternate Names

None

Changes

Nothing

Accesses Repository

Yes

Switches

--revision (-r) REV
--quiet (-0Q)
--verbose (-v)
--targets FlI LENAME
--stop- on-copy
--increnental

--xm

--usernane USER

- - password PASS

- - no- aut h- cache
--non-interactive

181

Subversion Complete Reference

--config-dir DR

Examples

You can see the log messages for all the paths that changed in your working copy by running svn log
from the top:

$ svn log

r20 | harry | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) | 1 line

ri7 | sally | 2003-01-16 23:21:19 -0600 (Thu, 16 Jan 2003) | 2 lines

Examine al log messages for a particular file in your working copy:

$ svn log foo.c

r32 | sally | 2003-01-13 16:43:13 -0600 (Mon, 13 Jan 2003) | 1 line
Added defi nes.

r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines

If you don't have aworking copy handy, you can log a URL:

$ svn log http://svn.red-bean. conlrepos/test/foo.c

r32 | sally | 2003-01-13 16:43:13 -0600 (Mn, 13 Jan 2003) | 1 line
Added defi nes.

r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines

If you want severa distinct paths underneath the same URL, you can usethe URL [PATH. . .] syntax.

$ svn log http://svn.red-bean.confrepos/test/ foo.c bar.c

r32 | sally | 2003-01-13 16:43:13 -0600 (Mon, 13 Jan 2003) | 1 line
Added defi nes.

r31 | harry | 2003-01-10 12:25:08 -0600 (Fri, 10 Jan 2003) | 1 line
Added new file bar.c

r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines

That is the same as explicitly placing both URLs on the command line:

182

Subversion Complete Reference

ttp://svn.red-bean.com repos/test/foo.c \
ttp://svn.red-bean. com repos/test/bar.c

When you're concatenating the results of multiple calls to the log command, you may want to use the -
-i ncrenment al switch. svn log normally prints out a dashed line at the beginning of a log message,
after each subsequent log message, and following the final log message. If you ran svn log on arange of
two revisions, you would get this:

$ svn log -r 14:15

However, if you wanted to gather 2 non-sequential log messages into afile, you might do something like
this:

$ svn log -r 14 > nylog
$ svn log -r 19 >> nylog
$ svn log -r 27 >> nylog
$ cat nyl og

Y ou can avoid the clutter of the double dashed linesin your output by using the incremental switch:

$ svn log --increnmental -r 14 > nyl og
$ svn log --incremental -r 19 >> nyl og
$ svn log --increnental -r 27 >> nyl og
$

cat nyl og

The- - i ncrenent al switch provides similar output control when using the - - xm switch.

183

Subversion Complete Reference

Tip
If you run svn log on a specific path and provide a specific revision and get no output at all

$ svn log -r 20 http://svn.red-bean. conl untouched. t xt

That just means that the path was not modified in that revision. If you log from the top of the
repository, or know the file that changed in that revision, you can specify it explicitly:

$ svn log -r 20 touched. txt

184

Subversion Complete Reference

Name

svn merge -- Apply the differences between two sources to aworking copy path.
svn merge

Synopsis

svn nmerge sourceURL1[@N] sourceURL2[@1 [WCPATH

svn nerge -r N: M SOURCE [PATH|

Description

In the first form, the source URLSs are specified at revisions N and M These are the two sources to be
compared. The revisions default to HEAD if omitted.

In the second form, SOURCE can be a URL or working copy item, in which case the corresponding URL
isused. This URL, at revisions N and M defines the two sources to be compared.

WCPATH is the working copy path that will receive the changes. If WCPATH is omitted, a default value

of “. " is assumed, unless the sources have identical basenames that match a file within “. ”: in which
case, the differences will be applied to that file.

Unlike svn diff, the merge command takes the ancestry of a file into consideration when performing a
merge operation. Thisis very important when you're merging changes from one branch into another and
you've renamed afile on one branch but not the other.

Alternate Names

None

Changes

Working copy

Accesses Repository
Only if working with URLs

Switches

--revision (-r) REV
--non-recursive (-N)
--quiet (-q)
--force

--dry-run
--diff3-cnmd CVMD
--ignore-ancestry
--user name USER

- - password PASS
--no- aut h-cache
--non-interactive
--config-dir DR

185

Subversion Complete Reference

Examples

Merge a branch back into the trunk (assuming that you have a working copy of the trunk, and that the
branch was created in revision 250):

$ svn nerge -r 250: HEAD http://svn.red-bean. conl repos/ branches/ nmy-branch
U myproj/tiny.txt

U nmyproj/thhgttg.txt

U myproj/w n.txt

U nyproj/flo.txt

If you branched at revision 23, and you want to merge changes on trunk into your branch, you could do
this from inside the working copy of your branch:

$ svn nmerge -r 23:30 file:///tnp/repos/trunk/vendors
U myproj/thhgttg.txt

To merge changesto asinglefile:

$ cd nyproj
$ svn nerge -r 30:31 thhgttg. txt
U thhgttg.txt

186

Subversion Complete Reference

Name

svn mkdir -- Create a new directory under version control.
svn mkdir

Synopsis

svn nkdir PATH. ..

svn nkdir URL...

Description

Create a directory with a name given by the final component of the PATH or URL. A directory specified
by aworking copy PATH is scheduled for addition in the working copy. A directory specified by a URL
is created in the repository via an immediate commit. Multiple directory URLs are committed atomi-
cally. In both cases al the intermediate directories must already exist.

Alternate Names

None

Changes

Working copy, repository if operating on a URL
Accesses Repository

Only if operating on a URL

Switches

--nmessage (-m TEXT

--file (-F) FILE
--quiet (-q)
--usernane USER

- - password PASS

- - no- aut h- cache
--non-interactive
--editor-cnd EDI TOR
--encodi ng ENC
--force-1o0g
--config-dir DR

Examples

Create adirectory in your working copy:

$ svn nkdir newdir
A newdi r

Create one in the repository (instant commit, so alog message is required):

187

Subversion Complete Reference

$ svn nkdir -m"Making a new dir." http://svn.red-bean. conlrepos/ newdir

Commi tted revision 26.

188

Subversion Complete Reference

Name

svn move -- Move afile or directory.
svn move

Synopsis

svn nove SRC DST

Description

This command moves afile or directory in your working copy or in the repository.
Tip
This command is equivalent to an svn copy followed by svn delete.

Note

Subversion does not support moving between working copies and URLSs. In addition, you can
only move files within a single repository—Subversion does not support cross-repository mov-

ing.
WC->WC
Move and schedule afile or directory for addition (with history).

URL -> URL
Complete server-side rename.

Alternate Names

mv, rename, ren

Changes

Working copy, repository if operating on a URL
Accesses Repository

Only if operating on a URL

Switches

--nmessage (-m) TEXT

--file (-F) FILE

--revision (-r) REV
--quiet (-q)
--force

--username USER

- - password PASS
--no- aut h-cache
--non-interactive

189

Subversion Complete Reference

--editor-cnmd EDI TOR
--encodi ng ENC
--force-1o0g
--config-dir DIR

Examples

Move afilein your working copy:

$ svn nove foo.c bar.c
A bar.c
D foo.c

Move afilein the repository (an immediate commit, so it requires a commit message):

$ svn nove -m"Mwve a file" ht /1 svn.red-bean. confrepos/foo.c \
ht /1

tp:
tp://svn.red-bean. conlrepos/bar.c

Committed revision 27.

190

Subversion Complete Reference

Name

svn propdel -- Remove a property from an item.
svn propdel

Synopsis

svn propdel PROPNAME [PATH. . .]

svn propdel PROPNAME --revprop -r REV [URL]

Description

This removes properties from files, directories, or revisions. The first form removes versioned properties
in working copy, while the second removes unversioned remote properties on a repository revision.

Alternate Names
pdel, pd

Changes

Working copy, repository only if operating on a URL
Accesses Repository
Only if operating on a URL
Switches

--quiet (-q)
--recursive (-R
--revision (-r) REV
--revprop

--username USER

- - password PASS

- - no- aut h- cache
--non-interactive
--config-dir DR
Examples

Delete a property from afile in your working copy

$ svn propdel svn:mnme-type sone-script
property 'svn:mnme-type' deleted from'sone-script'.

Delete arevision property:

$ svn propdel --revprop -r 26 rel ease-date
property 'rel ease-date' deleted fromrepository revision '26'

191

Subversion Complete Reference

192

Subversion Complete Reference

Name

svn propedit -- Edit the property of one or more items under version control.
svn propedit

Synopsis

svn propedit PROPNAVE PATH. ..
svn propedit PROPNAME --revprop -r REV [URL]

Description

Edits one or more properties using your favorite editor. The first form edits versioned properties in your
working copy, while the second edits unversioned remote properties on a repository revision.

Alternate Names

pedit, pe

Changes

Working copy, repository only if operating on a URL
Accesses Repository

Only if operating on a URL

Switches

--revision (-r) REV
--revprop
--username USER

- - password PASS
--no- aut h- cache
--non-interactive
--encodi ng ENC
--editor-cnd EDI TOR
--config-dir DR

Examples

svn propedit makesit easy to modify properties that have multiple values:

$ svn propedit svn:keywords foo.c
<svn will launch your favorite editor here, with a buffer open
contai ning the current contents of the svn: keywords property. You
can add nmultiple values to a property easily here by entering one
val ue per line.>

Set new val ue for property 'svn: keywords' on 'foo.c

193

Subversion Complete Reference

Name

svn propget -- Prints the value of a property.
svn propget

Synopsis

svn propget PROPNAME [PATH. ..]

svn propget PROPNAME --revprop -r REV [URL]

Description
Prints the value of a property on files, directories, or revisions. The first form prints the versioned prop-

erty of an item or items in your working copy, while the second prints unversioned remote property on a
repository revision. See the section called “ Properties’ for more information on properties.

Alternate Names

pget, pg

Changes

Working copy, repository only if operating on a URL
Accesses Repository

Only if operating on a URL

Switches

--recursive (-R
--revision (-r) REV
--revprop

--strict

--usernane USER

- - password PASS

- -no- aut h-cache
--non-interactive
--config-dir DR

Examples

Examine a property of afilein your working copy:
$ svn propget svn: keywords foo.c
Aut hor

Dat e
Rev

The same goes for arevision property:

194

Subversion Complete Reference

$ svn propget svn:log --revprop -r 20
Began] ournal .

195

Subversion Complete Reference

Name

svn proplist -- Lists all properties.
svn proplist

Synopsis

svn proplist [PATH. ..]
svn proplist --revprop -r REV [URL]

Description

Lists all properties on files, directories, or revisions. The first form lists versioned properties in working
copy, while the second lists unversioned remote properties on a repository revision.

Alternate Names

plist, pl

Changes

Working copy, repository only if operating on a URL
Accesses Repository

Only if operating on a URL

Switches

--verbose (-v)
--recursive (-R)
--revision (-r) REV
--quiet (-q)
--revprop

--user nane USER

- - password PASS

- - no- aut h-cache
--non-interactive
--config-dir DR

Examples

Y ou can use proplist to see the properties on an item in your working copy:

$ svn proplist foo.c
Properties on 'foo.c':
svn: m ne-type
svn: keywor ds
owner

But with the - - ver bose flag, svn proplist is extremely handy as it also shows you the values for the

196

Subversion Complete Reference

properties:

$ svn proplist --verbose foo.c

Properties on 'foo.c':
svn:mine-type : text/plain
svn: keywords : Author Date Rev
owner : sally

197

Subversion Complete Reference

Name

svn propset -- Set PROPNAME to PROPVAL on files, directories, or revisions.
svn propset

Synopsis

svn propset PROPNAMVE [PROPVAL | -F VALFILE] PATH...

svn propset PROPNAME --revprop -r REV [PROPVAL | -F VALFILE] [URL]

Description

Set PROPNAME to PROPVAL on files, directories, or revisions. The first example creates a versioned, lo-
cal property change in the working copy, and the second creates an unversioned, remote property change
on arepository revision.

Tip

Subversion has a number of “special” properties that affect its behavior. See the section called
“Specia properties’ for more on these properties.

Alternate Names

pset, ps

Changes

Working copy, repository only if operating on a URL
Accesses Repository

Only if operating on a URL

Switches

--file (-F) FILE
--quiet (-q)
--revision (-r) REV
--targets FI LENAME
--recursive (-R
--revprop

--user nane USER

- - password PASS

- - no- aut h-cache
--non-interactive
--encodi ng ENC
--force
--config-dir DIR

Examples

Set the mimetype on afile:

198

Subversion Complete Reference

$ svn propset svn:mne-type inage/jpeg foo.jpg
property 'svn:mine-type' set on 'foo.jpg

On aUNIX system, if you want afile to have the executable permission set:

$ svn propset svn: executabl e ON sonmescri pt
property 'svn:executable' set on 'sonescript'

Perhaps you have an internal policy to set certain properties for the benefit of your coworkers:

$ svn propset owner sally foo.c
property 'owner' set on 'foo.c'

If you made a mistake in alog message for a particular revision and want to changeit, use- - r evpr op
and set svn:log to the new log message:

$ svn propset --revprop -r 25 svn:log "Journal ed about trip to New York."
property 'svn:log' set on repository revision '25

Or, if you don't have aworking copy, you can provide a URL.

$ svn propset --revprop -r 26 svn:log "Docunent nap." http://svn.red-bean. comrepo
property 'svn:log' set on repository revision '25

Lastly, you can tell propset to take its input from afile. You could even use this to set the contents of a
property to something binary:

$ svn propset owner-pic -F sally.jpg noo.c
property 'owner-pic' set on 'npo.c’

Note

By default, you cannot modify revision properties in a Subversion repository. Your repository
administrator must explicitly enable revision property modifications by creating a hook named
pre-revprop- change. See the section called “Hook Scripts” for more information on
hook scripts.

199

Subversion Complete Reference

Name

svn resolved -- Remove “conflicted” state on working copy files or directories.
svn resolved

Synopsis

svn resol ved PATH...

Description
Remove “conflicted” state on working copy files or directories. This routine does not semantically re-
solve conflict markers; it merely removes conflict-related artifact files and allows PATH to be commit-

ted again; that is, it tells Subversion that the conflicts have been “resolved”. See the section called Re-
“solve Conflicts (Merging Others Changes)” for an in-depth look at resolving conflicts.

Alternate Names

None

Changes
Working copy

Accesses Repository

No

Switches

--targets FILENAVE
--recursive (-R
--quiet (-q)
--config-dir DR

Examples

If you get a conflict on an update, your working copy will sprout three new files:

$ svn update

C foo.c

Updated to revision 31.
$1s

foo.c

foo.c. mne

foo.c.r30

foo.c.r31

Once you've resolved the conflict and f 0o. ¢ is ready to be committed, run svn resolved to let your
working copy know you've taken care of everything.

Warning

200

Subversion Complete Reference

You can just remove the conflict files and commit, but svn resolved fixes up some bookkeep-
ing data in the working copy administrative area in addition to removing the conflict files, so
we recommend that you use this command.

201

Subversion Complete Reference

Name

svnrevert -- Undo al local edits.
svn revert

Synopsis

svn revert PATH. ..

Description

Reverts any local changes to a file or directory and resolves any conflicted states. svn revert will not
only revert the contents of an item in your working copy, but also any property changes. Finally, you
can use it to undo any scheduling operations that you may have done (e.g. files scheduled for addition or
deletion can be “unscheduled”).

Alternate Names

None

Changes

Working copy

Accesses Repository

No

Switches

--targets FILENAVE
--recursive (-R

--quiet (-0Q)
--config-dir DR

Examples

Discard changesto afile:

$ svn revert foo.c
Reverted foo.c

If you want to revert awhole directory of files, usethe- - r ecur si ve flag:

$ svn revert --recursive .
Reverted newdir/afile
Reverted foo.c

Reverted bar.txt

Lastly, you can undo any scheduling operations:

202

Subversion Complete Reference

$ svn add mni st ake.txt whoops
A m st ake. t xt

A whoops

A whoops/ oopsi e. ¢

$ svn revert m stake.txt whoops
Reverted m stake.txt
Reverted whoops

$ svn status

? m st ake. t xt
? whoops
Note

If you provide no targets to svn revert, it will do nothing—to protect you from accidentally
losing changes in your working copy, svn revert requires you to provide at least one target.

203

Subversion Complete Reference

Name

svn status -- Print the status of working copy files and directories.
svn status

Synopsis

svn status [PATH. ..]

Description

Print the status of working copy files and directories. With no arguments, it prints only locally modified
items (no repository access). With - - show updat es, add working revision and server out-of-date in-
formation. With - - ver bose, print full revision information on every item.

Thefirst five columnsin the output are each one character wide, and each column gives you information
about different aspects of each working copy item.

The first column indicates that an item was added, deleted, or otherwise changed.

No modifications.

"
Item is scheduled for Addition.
IDI
Item is scheduled for Deletion.
M
Item has been modified.
'
Itemisin conflict with updates received from the repository.
III
Item is being ignored (e.g. with the svn:ignore property)
'?

Item is not under version control.

Item is missing (e.g. you moved or deleted it without using svn). This also indicates that a directory
isincomplete (a checkout or update was interrupted).

Item is versioned as a directory, but has been replaced by afile, or vice versa

The second column tells the status of afile's or directory's properties.

No modifications.

204

Subversion Complete Reference

M
Properties for this item have been modified.

ICI
Properties for thisitem are in conflict with property updates received from the repository.

The third column is populated only if the working copy directory islocked.

Item is not locked.
ILI
Item is locked.

The fourth column is populated only if the item is scheduled for addition-with-history.

No history scheduled with commit.

History scheduled with commit.

The fifth column is populated only if the item is switched relative to its parent (see the section called
“Switching a Working Copy”).

Item is child of its parent directory.
g
[tem is switched.

The out-of-date information appears in the eighth column (only if you pass the - - show updat es
switch).

Theitem in your working copy is up-to-date.

A newer revision of the item exists on the server.

The remaining fields are variable width and delimited by spaces. The working revision is the next field
if the- - show updat es or - - ver bose switches are passed.

If the - - ver bose switch is passed, the last committed revision and last committed author are dis-
played next.

The working copy path is aways the final field, so it can include spaces.
Alternate Names

stat, st

205

Subversion Complete Reference

Changes

Nothing

Accesses Repository
Only if using - - show updat es

Switches

--show updates (-u)
--verbose (-v)
--non-recursive (-N)
--quiet (-q)
--no-ignore

- -user name USER

- - password PASS

- - no- aut h-cache
--non-interactive
--config-dir

Examples
Thisisthe easiest way to find out what changes you have made to your working copy:
$ svn status wc

M we/ bar . c
A + w/gax.c

If you want to find out what files in your working copy are out-of-date, pass the - - show updat es
switch (this will not make any changes to your working copy). Here you can see that we/ f 00. ¢ has
changed in the repository since we last updated our working copy:

$ svn status --show updates wc

M 965 wc/ bar. ¢
* 965 we/ f oo. ¢
A + 965 we/ gax. ¢
St at us agai nst revi sion: 981
Note

- - show updat es only places an asterisk next to items that are out of date (that is, items that
will be updated from the repository if you run svn update). - - show updat es does not
cause the status listing to reflect the repository's version of the item.

And finally, the most information you can get out of the status subcommand:

$ svn status --show updates --verbose wc

M 965 938 sally we/ bar . ¢
* 965 922 harry we/ f oo. ¢

A+ 965 687 harry we/ gax. ¢
965 687 harry we/ zig. c

Head revi si on: 981

206

Subversion Complete Reference

For many more examples of svn status, see the section called “ svn status”.

207

Subversion Complete Reference

Name
svn switch -- Update working copy to adifferent URL.

svn switch
Synopsis

svn switch URL [PATH]

Description

This subcommand updates your working copy to mirror a new URL—usually a URL which shares a
common ancestor with your working copy, although not necessarily. This is the Subversion way to
move a working copy to a new branch. See the section called “Switching a Working Copy” for an in-
depth look at switching.

Alternate Names

Sw

Changes
Working copy

Accesses Repository

Yes

Switches

--revision (-r) REV
--non-recursive (-N)
--quiet (-q)
--diff3-cnd CVMD
--rel ocate
--usernane USER

- - password PASS

- - no- aut h-cache
--non-interactive
--config-dir DIR

Examples

If you're currently inside the directory vendor s which was branched to vendor s-wi t h-fi x and
you'd like to switch your working copy to that branch:

$ svn switch http://svn.red-bean. conlrepos/branches/vendors-with-fix .
U nyproj/foo.txt

U nyproj/bar.txt

U nyproj/baz.c

U nyproj/qux.c

Updated to revision 31.

208

Subversion Complete Reference

And to switch back, just provide the URL to the location in the repository from which you originally
checked out your working copy:

$ svn switch http://svn.red-bean. conm repos/trunk/vendors .
U nyproj/foo.txt

U nyproj/bar.txt

U nyproj/baz.c

U nmyproj/qux.c

Updated to revision 31.

Tip

You can just switch part of your working copy to a branch if you don't want to switch your en-
tire working copy.

If the location of your repository changes and you have an existing working copy that you'd like to con-
tinue to use, you can use svn switch --relocate to change your working copy from one URL to another:

$ svn checkout file:///tnmp/repos test
A test/a
A test/b

$ mv repos new ocation
$ cd test/

$ svn update
svn: Unable to open an ra_local session to URL
svn: Unable to open repository '"file:///tnp/repos'

$ svn switch --relocate file:///tnp/repos file:///tnp/new ocation .
$ svn update
At revision 3.

209

Subversion Complete Reference

Name

svn update -- Updates your working copy.
svn update

Synopsis

svn update [PATH. ..]

Description
svn update brings changes from the repository into your working copy. If no revision given, it brings

your working copy up-to-date with the HEAD revision. Otherwise, it synchronizes the working copy to
therevision given by the - - r evi si on switch.

For each updated item aline will start with a character reporting the action taken. These characters have
the following meaning:

A
Added

Deleted
Updated
Conflict
Merged

A character in the first column signifies an update to the actual file, while updates to the file's properties
are shown in the second column.

Alternate Names

up

Changes

Working copy

Accesses Repository

Yes

Switches

--revision (-r) REV
--non-recursive (-N)
--quiet (-q)

210

Subversion Complete Reference

--diff3-cnd CVMD
--usernane USER
- - password PASS
- - no- aut h- cache
--non-interactive
--config-dir DIR

Examples

Pick up repository changes that have happened since your last update:

$ svn update

A newdir/toggle.c

A newdir/disclose.c

A newdir/launch.c

D newdi r/ READVE
Updated to revision 32.

You can also update your working copy to an older revision (Subversion doesn't have the concept of
“sticky” fileslike CV'S does; see Appendix A, Subversion for CVSUsers):

$ svn update -r30

A newdi r/ README

D newdir/toggle.c

D newdir/disclose.c

D newdir/launch.c

U foo.c

Updated to revision 30.

Tip
If you want to examine an older revision of asingle file, you may want to use svn cat.

svhadmin

svnadmin is the administrative tool for monitoring and repairing your Subversion repository. For de-
tailed information, see the section called “svnadmin”.

Since svnadmin works via direct repository access (and thus can only be used on the machine that holds
the repository), it refersto the repository with a path, not a URL.

svnadmin Switches

- - bdb- 1 0g- keep
(Berkeley DB specific) Disable automatic log removal of database log files.

- - bdb-t xn- nosync
(Berkeley DB specific) Disables fsync when committing database transactions.

- - bypass- hooks
Bypass the repository hook system.

--cl ean-1o0gs
Removes unused Berkeley DB logs.

211

Subversion Complete Reference

--force-uuid
By default, when loading data into repository that already contains revisions, svnadmin will ignore
the UUI D from the dump stream. This switch will cause the repository's UUI D to be set to the UUI D
from the stream.

--ignore-uuid
By default, when loading an empty repository, svnadmin will use the UUI D from the dump stream.
This switch will cause that UUID to be ignored.

--increnental
Dump arevision only as a diff against the previous revision, instead of the usual fulltext.

--parent-dir DIR
When loading a dumpfile, root paths at DI Rinstead of / .

--revision(-r)ARG
Specify a particular revision to operate on.

--qui et
Do not show normal progress—show only errors.

svnadmin Subcommands

212

Subversion Complete Reference

Name
svnadmin create -- Create a new, empty repository at REPOS _PATH.

svnadmin create
Synopsis

svnadmi n create REPOS_PATH

Description

Create a new, emgpty repository at the path provided. If the provided directory does not exist, it will be
created for you.4

Switches

- - bdb-t xn- nosync
- - bdb- 1 0g- keep

Examples

Creating a new repository isjust this easy:

$ svnadm n create /usr/local/svn/repos

43Remember, svnadmin works only with local paths, not URLs.

213

Subversion Complete Reference

Name
svnadmin dump -- Dump the contents of filesystem to stdout.

svnadmin dump
Synopsis

svnadmi n dunp REPOS_PATH [-r LOWER[: UPPER]] [--increnental]

Description

Dump the contents of filesystem to stdout in a “dumpfile” portable format, sending feedback to stderr.
Dump revisions LONER rev through UPPER rev. If no revisions are given, dump al revision trees. If
only LOAER is given, dump that one revision tree. See the section called “Migrating a Repository” for a
practical use.

Switches

--revision (-r)
--increment al
--qui et

Examples

Dump your whole repository:

$ svnadm n dunp /usr/local/svn/repos
SVUN-f s-dunp-format -version: 1

Revi si on- nunber: 0

* Dunped revision O.

Prop-content -1 ength: 56
Content-1ength: 56

Incrementally dump a single transaction from your repository:

$ svnadmi n dunp /usr/local/svn/repos -r 21 --increnental
* Dunped revision 21.

SVUN-f s-dunp-format -version: 1

Revi si on- nunber: 21

Prop-content -l ength: 101

Content-1length: 101

214

Subversion Complete Reference

Name

svnadmin help

svnadmin help

Synopsis

svnadmi n hel p [SUBCOVWAND. . .]

Description

This subcommand is useful when you're trapped on a desert island with neither a net connection nor a
copy of this book.

Alternate Names

?2.h

215

Subversion Complete Reference

Name

svnadmin hotcopy -- Makes a hot copy of arepository.
svnadmin hotcopy

Synopsis

svnadni n hot copy OLD REPOS _PATH NEW REPOS_PATH

Description

This subcommand makes a full “hot” backup of your repository, including all hooks, configuration files,
and, of course, database files. If you pass the - - cl ean- | ogs switch, svnadmin will perform a hot-
copy of your repository, and then remove unused Berkeley DB logs from the original repository.

Switches

--cl ean-1o0gs

216

Subversion Complete Reference

Name

svnadmin list-dblogs -- Ask Berkeley DB which log files exist for agiven svn repository.
svnadmin list-dblogs

Synopsis

svnadmi n |ist-dbl ogs REPOS_PATH

Description

Berkeley DB creates logs of all changes to the repository, which allow it to recover in the face of catas-
trophe. Unless you enable DB_LOGS AUTOREMOVE, the log files accumulate, although most are no
longer used and can be deleted to reclaim disk space. See the section called “Managing Disk Space” for
more information.

217

Subversion Complete Reference

Name

svnadmin list-unused-dblogs -- Ask Berkeley DB which log files can be safely deleted.
svnadmin list-unused-dblogs

Synopsis

svnadmi n |ist-unused- dbl ogs REPOS_PATH

Description

Berkeley DB creates logs of all changes to the repository, which allow it to recover in the face of catas-
trophe. Unless you enable DB_LOGS AUTOREMOVE, the log files accumulate, although most are no
longer used and can be deleted to reclaim disk space. See the section called “Managing Disk Space” for
more information.

Examples

Remove all unused log files from arepository:

$ svnadm n |ist-unused-dbl ogs /path/to/repos

/ pat h/t o/ repos/| og. 0000000031

/ pat h/t o/ repos/| og. 0000000032

/ pat h/t o/ repos/| og. 0000000033

$ svnadmi n |ist-unused-dbl ogs /path/to/repos | xargs rm
di sk space recl ai med!

218

Subversion Complete Reference

Name

svnadmin load -- Read a“dumpfile-formatted” stream from stdin.
svnadmin load

Synopsis

svnadmi n | oad REPOS_PATH

Description

Read a “dumpfile”-formatted stream from stdin, committing new revisions into the repository's filesys-
tem. Send progress feedback to stdout.

Switches

--quiet (-q)
--ignore-uuid
--force-uuid
--parent-dir

Example

This shows the beginning of loading a repository from a backup file (made, of course, with svn dump):

$ svnadm n | oad /usr/local/svn/restored < repos-backup
<<< Started new txn, based on original revision 1

* adding path : test ... done.

* adding path : test/a ... done.

Or if you want to load into a subdirectory:

$ svnadmin |load --parent-dir new subdir/for/project /usr/local/svn/restored < repo
<<< Started new txn, based on original revision 1

* adding path : test ... done.

* adding path : test/a ... done.

219

Subversion Complete Reference

Name

svhadmin Istxns -- Print the names of all uncommitted transactions.
svhadmin Istxns

Synopsis

svnadmi n | st xns REPOS_PATH

Description

Print the names of all uncommitted transactions. See the section called “Repository Cleanup” for infor-
mation on how uncommitted transactions are created and what you should do with them.

Examples

List all outstanding transactions in arepository.

$ svnadmi n | stxns /usr/local/svn/repos/
1w
1x

220

Subversion Complete Reference

Name

svnadmin recover -- Recovers any lost state in arepository.
svnadmin recover

Synopsis

svnadmi n recover REPOS_PATH

Description

Run this command if you get an error indicating that your repository needs to be recovered.

Examples

Recover a hung repository:

$ svnadm n recover /usr/local/svn/repos/
Acquiring exclusive |lock on repository db.
Recovery is running, please stand by...
Recovery conpl et ed.

The | atest repos revision is 34.

221

Subversion Complete Reference

Name
svnadmin rmtxns -- Deletes transactions from a repository.

svnadmin rmtxns
Synopsis

svnadmi n rntxns REPOS_PATH TXN_NAME. . .

Description

Deletes outstanding transactions from a repository. Thisis covered in detail in the section called Repos-
“itory Cleanup”.

Switches
--quiet (-q)

Examples

Remove named transactions:

$ svnadm n rntxns /usr/local/svn/repos/ 1w 1x

Fortunately, the output of svn Istxns works great as the input for rmtxns:

$ svnadm n rntxns /usr/local/svn/repos/ “~svnadm n |stxns /usr/local/svn/repos/’

Which will remove all uncommitted transactions from your repository.

222

Subversion Complete Reference

Name

svnadmin setlog -- Set the log-message on arevision.
svnadmin setlog

Synopsis

svnadmi n setl og REPOS_PATH -r REVI SI ON FI LE

Description
Set the log-message on revision REVISION to the contents of FILE.
Thisis similar to using svn propset --revprop to set the svn: | og property on arevision, except that

you can aso use the option - - bypass- hooks to avoid running any pre- or post-commit hooks, which
isuseful if the modification of revision properties has not been enabled in the pre-revprop-change hook.

Warning

Revision properties are not under version control, so this command will permanently overwrite
the previous log message.

Switches

--revision (-r) ARG
- - bypass- hooks

Examples

Set the log message for revision 19 to the contents of thefile s g:

$ svnadm n setlog /usr/local/svn/repos/ -r 19 nsg

223

Subversion Complete Reference

Name

svnadmin verify -- Verifies the data stored in the repository.
svnadmin verify

Synopsis

svnadmi n verify REPOS_PATH

Description

Run this command if you wish to verify the integrity of your repository. This basically iterates through
all revisionsin the repository by internally dumping all revisions and discarding the outpui.

Examples
Verify ahung repository:

$ svnadmi n verify /usr/local/svn/repos/
* Verified revision 1729.

svnlook

svnlook isacommand-line utility for examining different aspects of a Subversion repository. It does not
make any changes to the repository—it's just used for “peeking”. svnlook is typically used by the repos-
itory hooks, but a repository administrator might find it useful for diagnostic purposes.

Since svnlook works via direct repository access (and thus can only be used on the machine that holds
the repository), it refers to the repository with a path, not a URL.

If no revision or transaction is specified, svnlook defaults to the youngest (most recent) revision of the
repository.

svnlook Switches

Switches in svnlook are global, just like in svn and svnadmin, however, most switches only apply to
one subcommand since the functionality of svnlook is (intentionally) limited in scope.

--no-di ff-del eted
Prevents svnlook from printing differences for deleted files. The default behavior when a file is
deleted in a transaction/revision is to print the same differences that you would see if you had |eft
the file but removed all the content.

--revision(-r)
Specify a particular revision number that you wish to examine.

--transaction(-t)
Specify a particular transaction id that you wish to examine.

--showi ds
Show the filesystem node revision IDs for each path in the filesystem tree.

224

Subversion Complete Reference

svnlook

225

Subversion Complete Reference

Name

svnlook author -- Prints the author.
svnlook author

Synopsis

svnl ook aut hor REPOS_PATH

Description

Prints the author of arevision or transaction in the repository.

Switches

--revision (-r)
--transaction (-t)

Examples

svnlook author is handy, but not very exciting:

$ svnl ook author -r 40 /usr/local/svn/repos
sally

226

Subversion Complete Reference

Name

svnlook cat -- Print the contents of afile.
svnlook cat

Synopsis

svnl ook cat REPOS PATH PATH | N _REPCS

Description

Print the contents of afile.

Switches

--revision (-r)
--transaction (-t)

Examples

This shows the contents of afilein transaction ax8, located at / t r unk/ READVE:

$ svnl ook cat -t ax8 /usr/local/svn/repos /trunk/ READVE

Subversion, a version control system

$Last ChangedDat e: 2003-07-17 10:45:25 -0500 (Thu, 17 Jul 2003) $
Cont ent s:

. A FEW PO NTERS
1. DOCUMENTATI ON
[11. PARTICIPATING I N THE SUBVERSI ON COVMUNI TY

227

Subversion Complete Reference

Name

svnlook changed -- Print the paths that were changed.
svnlook changed

Synopsis

svnl ook changed REPOS_PATH

Description

Print the paths that were changed in a particular revision or transaction, as well as an *svn update-style”
status letter in the first column: A for added, D for deleted, and U for updated (modified).

Switches

--revision (-r)
--transaction (-t)

Examples

Thisshows alist of al the changed filesin revision 39 of atest repository:

$ svnl ook changed -r 39 /usr/local/svn/repos
A trunk/vendors/deli/

A trunk/vendors/deli/chips.txt

A trunk/vendors/deli/sandw ch. txt

A trunk/vendors/deli/ pickle.txt

228

Subversion Complete Reference

Name
svnlook date -- Print the datestamp.

svnlook date
Synopsis

svnl ook date REPOS_PATH

Description
Print the datestamp of arevision or transaction in arepository.

Switches

--revision (-r)
--transaction (-t)

Examples

This shows the date of revision 40 of atest repository:

$ svnl ook date -r 40 /tnp/repos/
2003-02-22 17:44:49 -0600 (Sat, 22 Feb 2003)

229

Subversion Complete Reference

Name
svnlook diff -- Prints differences of changed files and properties.

svnlook diff
Synopsis

svnl ook di ff REPOS_PATH

Description
Prints GNU-style differences of changed files and propertiesin arepository.

Switches

--revision (-r)
--transaction (-t)
--no-di ff-del eted

Examples

This shows a newly added (empty) file, a deleted file, and a copied file:

$ svnlook diff -r 40 /usr/local/svn/repos/
Copi ed: egg.txt (fromrev 39, trunk/vendors/deli/pickle.txt)

Added: trunk/vendors/deli/soda.txt

Modi fi ed: trunk/vendors/deli/sandw ch.txt

--- trunk/vendors/deli/sandw ch.txt (original)

+++ trunk/vendors/deli/sandw ch.txt 2003-02-22 17:45: 04. 000000000 -0600
@-0,0 +1 @@

+Don't forget the nmayo!

Del et ed: trunk/vendors/deli/chips.txt

Del et ed: trunk/vendors/deli/pickle.txt

230

Subversion Complete Reference

Name

svnlook dirs-changed -- Print the directories that were themselves changed.
svnlook dirs-changed

Synopsis

svnl ook dirs-changed REPOS_PATH

Description

Print the directories that were themselves changed (property edits) or whose file children were changed.

Switches

--revision (-r)
--transaction (-t)

Examples

This shows the directories that changed in revision 40 in our sample repository:

$ svnl ook dirs-changed -r 40 /usr/local /svn/repos
t runk/ vendor s/ deli/

231

Subversion Complete Reference

Name

svnlook help
svnlook help
Synopsis

Al so svnl ook -h and svnl ook -?.

Description

Displays the help message for svnlook. This command, like its brother svn help, is also your friend,
even though you never call it anymore and forgot to invite it to your last party.

Alternate Names

?2.h

232

Subversion Complete Reference

Name

svnlook history -- Print information about the history of a path in the repository (or the root directory if
no path is supplied).

svnlook history

Synopsis

svnl ook history REPOS_PATH
[PATH_ | N_REPCS]

Description

Print information about the history of a path in the repository (or the root directory if no path is sup-
plied).

Switches

--revision (-r)
--showi ds
Examples

This shows the history output for the path/ t ags/ 1. 0 as of revision 20 in our sample repository.

$ svnl ook history -r 20 /usr/local/svn/repos /tags/1.0 --showids
REVI SION PATH <I D>

19 /tags/1.0 <1.2.12>

17 / branches/1.0-rc2 <1.1.10>
16 / branches/1.0-rc2 <1.1.x>
14 /trunk <1.0.9>

13 /trunk <1.0.o0>

11 /trunk <1.0. k>

9 /trunk <1.0.g>

8 /trunk <1.0.e>

7 /trunk <1.0.b>

6 /trunk <1.0.9>

5 /trunk <1.0.7>

4 /trunk <1.0.6>

2 /trunk <1.0.3>

1 /trunk <1.0.2>

233

Subversion Complete Reference

Name

svnlook info -- Print the author, datestamp, log message size, and log message.
svnlook info

Synopsis

svnl ook info REPOS_PATH

Description
Print the author, datestamp, log message size, and log message.

Switches

--revision (-r)
--transaction (-t)

Examples

This shows the info output for revision 40 in our sample repository.

$ svnlook info -r 40 /usr/local/svn/repos
sally

2003-02-22 17:44:49 -0600 (Sat, 22 Feb 2003)
15

Rearrange | unch.

234

Subversion Complete Reference

Name
svnlook log -- Print the log message.

svnlook log
Synopsis

svnl ook | og REPOS_PATH

Description
Print the log message.

Switches

--revision (-r)
--transaction (-t)

Examples

This shows the log output for revision 40 in our sample repository:

$ svnl ook | og /tnp/repos/
Rearrange | unch.

235

Subversion Complete Reference

Name
svnlook propget -- Print the raw value of aproperty on a path in the repository.

svnlook propget
Synopsis

svnl ook propget REPOS_PATH PROPNAME PATH | N_REPCS

Description

List the value of a property on a path in the repository.
Alternate Names

Pg, pget

Switches

--revision (-r)
--transaction (-t)

Examples

This shows the value of thefile/ t r unk/ sandwi ch inthe HEAD revision:

$ svnl ook pg /usr/local/svn/repos seasonings /trunk/sandw ch
nmust ar d

236

Subversion Complete Reference

Name

svnlook proplist -- Print the names and values of versioned file and directory properties.
svnlook proplist

Synopsis

svnl ook proplist REPOS_PATH PATH | N_REPCS

Description

List the properties of a path in the repository. With - - ver bose, show the property valuestoo.
Alternate Names

pl, plist

Switches

--revision (-r)

--transaction (-t)

--verbose (-v)

Examples

This shows the names of properties set on thefile/ t r unk/ READVE in the HEAD revision:

$ svnl ook proplist /usr/local/svn/repos /trunk/ README

ori gi nal - aut hor
svn: m ne-type

Thisisthe same command as in the previous example, but this time showing the property values as well:

$ svnl ook proplist /usr/local/svn/repos /trunk/ READVE
original-author : fitz
svn:mne-type @ text/plain

237

Subversion Complete Reference

Name

svnlook tree -- Print the tree

svnlook tree

Synopsis

svnl ook tree REPOS_PATH [PATH_| N_REPQOS]

Description

Print the tree, starting at PATH | N_REPGS (if supplied, at the root of the tree otherwise), optionally
showing node revision ids.

Switches

--revision (-r)
--transaction (-t)
--showi ds

Examples

This shows the tree output (with node-IDs) for revision 40 in our sample repository:

$ svnlook tree -r 40 /usr/local/svn/repos --showids
/ <0.0.2j>
trunk/ <p.O0.2j>
vendors/ <g.0. 2j >
deli/ <1g.0.2j>
egg. txt <li.e.2j>
soda. t xt <1k. 0. 2j >
sandwi ch. txt <1j.0.2j>

238

Subversion Complete Reference

Name

svnlook uuid -- Print the repository's UUI D.
svnlook uuid

Synopsis

svnl ook uui d REPOS_PATH

Description

Print the UUI Dfor the repository. the UUID is the repository's Universal Unique I Dentifier. The Subver-
sion client uses this identifier to differentiate between one repository and another.

Examples

$ svnl ook uuid /usr/local/svn/repos
e7f elb91- 8cd5- 0310- 98dd- 2f 12e793c5e8

239

Subversion Complete Reference

Name

svnlook youngest -- Print the youngest revision number.
svnlook youngest

Synopsis

svnl ook youngest REPQOS PATH

Description
Print the youngest revision number of arepository.
Examples

This shows the youngest revision of our sample repository:

$ svnl ook youngest /tnp/repos/
42

240

Appendix A. Subversion for CVS Users

This appendix is a guide for CV'S users new to Subversion. It's essentialy alist of differences between
the two systems as “viewed from 10,000 feet”. For each section, we provide backreferences to relevant
chapters when possible.

Although the goal of Subversion isto take over the current and future CV'S user base, some new features
and design changes were required to fix certain “broken” behaviors that CVS had. This means that, as a
CVS user, you may need to break habits—ones that you forgot were odd to begin with.

Revision Numbers Are Different Now

In CVS, revision numbers are per-file. Thisis because CV'S uses RCS as a backend; each file has a cor-
responding RCS file in the repository, and the repository is roughly laid out according to the structure of
your project tree.

In Subversion, the repository looks like a single filesystem. Each commit results in an entirely new
filesystem tree; in essence, the repository is an array of trees. Each of these treesis labeled with asingle
revision number. When someone talks about “revision 54", they're talking about a particular tree (and
indirectly, the way the filesystem looked after the 54th commit).

Technically, it's not valid to talk about “revision 5 of f 00. c¢”. Instead, one would say “f 00. c asit ap-
pearsinrevision 5”. Also, be careful when making assumptions about the evolution of afile. In CVS, re-
visions 5 and 6 of f 00. ¢ are always different. In Subversion, it's most likely that f 0o. ¢ did not
change between revisions 5 and 6.

For more details on this topic, see the section called “Revisions’.

Directory Versions

Subversion tracks tree structures, not just file contents. It's one of the biggest reasons Subversion was
written to replace CVS.

Here's what this means to you, as aformer CVS user:

* The svn add and svn delete commands work on directories now, just as they work on files. So do
svn copy and svn move. However, these commands do not cause any kind of immediate change in
the repository. Instead, the working items are simply “ scheduled” for addition or deletion. No reposi-
tory changes happen until you run svn commit.

» Directories aren't dumb containers anymore; they have revision numbers like files. (Or more prop-
erly, it's correct to talk about “directory f oo/ inrevision5".)

Let's talk more about that last point. Directory versioning is a hard problem; because we want to allow
mixed-revision working copies, there are some limitations on how far we can abuse this model.

From a theoretical point of view, we define “revision 5 of directory f 00” to mean a specific collection
of directory-entries and properties. Now suppose we start adding and removing files from f 0o, and then
commit. It would be alieto say that we still haverevision 5 of f 0. However, if we bumped f oo'srevi-
sion number after the commit, that would be a lie too; there may be other changesto f 0o we haven't yet
received, because we haven't updated yet.

Subversion deals with this problem by quietly tracking committed adds and deletes in the . svn area.

241

Subversion for CVS Users

When you eventually run svn update, all accounts are settled with the repository, and the directory's
new revision number is set correctly. Therefore, only after an update is it truly safe to say that you have
a “ perfect” revision of a directory. Most of the time, your working copy will contain “imperfect” direc-
tory revisions.

Similarly, a problem arises if you attempt to commit property changes on a directory. Normally, the
commit would bump the working directory's local revision number. But again, that would be a lie, be-
cause there may be adds or deletes that the directory doesn't yet have, because no update has happened.
Therefore, you are not allowed to commit property-changes on a directory unless the directory is up-
to-date.

For more discussion about the limitations of directory versioning, see the section called “The Limita-
tions of Mixed Revisions’.

More Disconnected Operations

In recent years, disk space has become outrageously cheap and abundant, but network bandwidth has
not. Therefore, the Subversion working copy has been optimized around the scarcer resource.

The . svn administrative directory serves the same purpose as the CVS directory, except that it also
stores read-only, “pristing” copies of your files. This alows you to do many things off-line:

svn status
Shows you any local changes you've made (see the section called “ svn status”)

svn diff
Shows you the details of your changes (see the section called “ svn diff”)

svn revert
Removes your local changes (see the section called “svn revert”)

Also, the cached pristine files allow the Subversion client to send differences when committing, which
CV S cannot do.

The last subcommand in the list is new; it will not only remove local mods, but it will un-schedule oper-
ations such as adds and deletes. It's the preferred way to revert afile; running rm file; svn update will
still work, but it blurs the purpose of updating. And, while we're on this subject...

Distinction Between Status and Update

In Subversion, we've tried to erase a lot of the confusion between the cvs status and cvs update com-
mands.

The cvs status command has two purposes: first, to show the user any local modifications in the work-
ing copy, and second, to show the user which files are out-of-date. Unfortunately, because of CVS's
hard-to-read status output, many CV S users don't take advantage of this command at all. Instead, they've
developed a habit of running cvs up to quickly see their mods. Of course, this has the side effect of
merging repository changes that you may not be ready to deal with!

With Subversion, we've tried to remove this muddle by making the output of svn status easy to read for
both humans and parsers. Also, svn update only prints information about files that are updated, not lo-
cal modifications.

svn status prints all files that have local modifications. By default, the repository is not contacted. While
this subcommand accepts afair number of options, the following are the most commonly used ones:

242

Subversion for CVS Users

-u
Contact the repository to determine, and then display, out-of-dateness information.

-V
Show all entries under version control.

-N
Run non-recursively (do not descend into subdirectories).

The status command has two output formats. In the default “short” format, local modifications look like
this:

% svn st at us
M ./foo.c
M ./ bar/baz.c

If you specify the - - show updat es (- u) switch, alonger output format is used:

% svn status -u

M 1047 ./foo.c
* 1045 ./faces. htm
* - ./ bl 0o. png
M 1050 ./ bar/baz.c
St at us agai nst revi sion: 1066

In this case, two new columns appear. The second column contains an asterisk if the file or directory is
out-of-date. The third column shows the working-copy's revision number of the item. In the example
above, the asterisk indicates that f aces. ht ml would be patched if we updated, and that bl 0o. png is
anewly added file in the repository. (The - next to bloo.png means that it doesn't yet exist in the work-

ing copy.)

Lastly, here's a quick summary of the most common status codes that you may see:

A Resource is schedul ed for Addition

D Resource is schedul ed for Del etion

M Resource has local nodifications

C Resource has conflicts (changes have not been conpletely nerged
bet ween the repository and worki ng copy version)

X Resource is external to this working copy (cones from anot her
repository. See the section called “svn:externals”)

Resource is not under version control

—9

Resource is mssing or inconplete (removed by another tool than
Subver si on)

Subversion has combined the CVS P and U codes into just U. When a merge or conflict occurs, Subver-
sion simply prints G or C, rather than a whole sentence about it.

For amore detailed discussion of svn status, see the section called “ svn status”.

Branches and Tags

Subversion doesn't distinguish between filesystem space and “branch” space; branches and tags are ordi-

243

Subversion for CVS Users

nary directories within the filesystem. This is probably the single biggest mental hurdie a CV'S user will
need to climb. Read all about it in Chapter 4, Branching and Merging.

Warning

Since Subversion treats branches and tags as ordinary directories, always remember to check
out the t runk (http://svn. exanpl e. conirepos/cal c/trunk/) of your project,
and not the project itself (htt p: // svn. exanpl e. coni r epos/ cal c¢/). If you make the
mistake of checking out the project itself, you'll wind %R with a working copy that contains a
copy of your project for every branch and tag you have.

Metadata Properties

A new feature of Subversion isthat you can attach arbitrary metadata (or “properties’) to files and direc-
tories. Properties are arbitrary name/value pairs associated with files and directories in your working

copy.

To set or get a property name, use the svn propset and svn propget subcommands. To list all properties
on an object, use svn proplist.

For more information, see the section called “Properties’.

Conflict Resolution

CV S marks conflicts with in-line “conflict markers’, and prints a C during an update. Historically, this
has caused problems, because CV Sisn't doing enough. Many users forget about (or don't see) the C after
it whizzes by on their terminal. They often forget that the conflict-markers are even present, and then ac-
cidentally commit files containing conflict-markers.

Subversion solves this problem by making conflicts more tangible. It remembers that afileisin a state
of conflict, and won't allow you to commit your changes until you run svn resolved. See the section
called “Resolve Conflicts (Merging Others Changes)” for more details.

Binary Files and Translation

In the most general sense, Subversion handles binary files more gracefully than CVS does. Because
CVSuses RCS, it can only store successive full copies of a changing binary file. But internally, Subver-
sion expresses differences between files using a binary-differencing algorithm, regardless of whether
they contain textual or binary data. That means that all files are stored differentially (compressed) in the
repository, and small differences are aways sent over the network.

CV S users have to mark binary fileswith - kb flags, to prevent data from being garbled (due to keyword
expansion and line-ending translations). They sometimes forget to do this.

Subversion takes the more paranoid route: first, it never performs any kind of keyword or line-ending
trandation unless you explicitly ask it do so (see the section called “svn:keywords’ and the section
called “svn:eol-style” for more details). By default, Subversion treats all file data as literal byte strings,
and files are always stored in the repository in an untrand ated state.

Second, Subversion maintains an internal notion of whether afileis“text” or “binary” data, but this no-
tion is only extant in the working copy. During an svn update, Subversion will perform contextual
merges on locally modified text files, but will not attempt to do so for binary files.

To determine whether a contextual merge is possible, Subversion examines the svn: ni ne-t ype

Y rhat is, providing you don't run out of disk space before your checkout finishes.

244

Subversion for CVS Users

property. If the file has no svn: m ne-t ype property, or has a mime-type that is textual (e.g. text/*),
Subversion assumes it is text. Otherwise, Subversion assumes the file is binary. Subversion also helps
users by running a binary-detection agorithm in the svn import and svn add commands. These com-
mands will make a good guess and then (possibly) set a binary svn: nmi me-t ype property on the file
being added. (If Subversion guesses wrong, the user can always remove or hand-edit the property.)

Versioned Modules

Unlike CVS, a Subversion working copy is aware that it has checked out a module. That means that if
somebody changes the definition of a module, then a call to svn update will update the working copy

appropriately.

Subversion defines modules as a list of directories within a directory property: see the section called
“Externals Definitions”.

Authentication

With CVS's pserver, you are required to “login” to the server before any read or write operation—you
even have to login for anonymous operations. With a Subversion repository using Apache HTTPD as
the server, you don't provide any authentication credentials at the outset—if an operation that you per-
form requires authentication, the server will challenge you for your credentials (whether those creden-
tials are username and password, a client certificate, or even both). So if your repository is world-
readable, you will not be required to authenticate at all for read operations.

As with CVS, Subversion still caches your credentials on disk (in your ~/ . subver si on/ aut h/ di-
rectory) unlessyou tell it not to by using the - - no- aut h- cache switch.

Converting a Repository from CVS to Subver-

sion

Perhaps the most important way to familiarize CVS users with Subversion is to let them continue to
work on their projects using the new system. And while that can be somewhat accomplished using a flat
import into a Subversion repository of an exported CV S repository, the more thorough solution involves
transferring not just the latest snapshot of their data, but al the history behind it as well, from one sys-
tem to another. This is an extremely difficult problem to solve that involves deducing changesets in the
absence of atomicity, and translating between the systems completely orthogona branching policies,
among other complications. Still, there are a handful of tools claiming to at least partially support the
ability to convert existing CV S repositories into Subversion ones.

One such tool iscvs2svn (ht t p: // cvs2svn. tigri s. org/), aPython script originally created by
members of Subversion's own development community. Others include Chia-liang Kao's Subversion
converter plugin to the VCP tool (http://svn. cl kao. org/ revm / branches/ svn-perl/)
and Lev Serebryakov's RefineCVS (htt p: // | ev. ser ebryakov. spb. ru/ refi necvs/). These
tools have various levels of completeness, and may make entirely different decisions about how to han-
dle your CV S repository history. Whichever tool you decide to use, be sure to perform as much verifica-
tion as you can stand on the conversion results—after all, you've worked hard to build that history!

For an updated collection of links to known converter tools, visit the Links page of the Subversion web-
site(http://subversion.tigris.org/project_links.htm).

245

Appendix B. Troubleshooting
Common Problems

There are a number of problems you may run into in the course of installing and using Subversion.
Some of these will be resolved once you get a better idea of how Subversion does things, while others
are caused because you're used to the way that other version control systems work. Still other problems
might be unsolvable due to bugs in some of the operating systems that Subversion runs on (considering
the wide array of OSes that Subversion runs on, it's amazing that we don't encounter many more of
these).

The following list has been compiled over the course of years of Subversion usage. If you can't find the
problem you're having here, look at the most up-to-date version of the FAQ on Subversion's main web-
site. If you're till stuck, then send mail to <user s@ubversi on.tigris. or g> with a detailed
description of the problem you're having

Problems Using Subversion

Every time | try to access my repository, my Subversion client just

hangs.

Your repository is not corrupt, nor is your data lost. If your process accesses the repository directly
(mod_dav_svn, svnlook, svnadmin, or if you accessafil e:// URL), then it's using Berkeley DB to
access your data. Berkeley DB is journaling system, meaning that it logs everything it is about to do be-
fore it does so. If your processis interrupted (kill signal or segfault), then alockfile is left behind, along
with alogfile describing unfinished business. Any other process that attempts to access the database will
just hang, waiting for the lockfile to disappear. To awaken your repository, you need to ask Berkeley DB
to either finish the work, or rewind the database to a previous state that is known to be consistent.

Make sure you run this command as the user that owns and manages the database, and not asroot, else it
will leave root-owned files in the db directory which cannot be opened by the non-root user that man-
ages the database, which is typically either you or your Apache process. Also be sure to have the correct
umask set when you run recover, since failing to do so will lock out users that are in the group allowed
to access the repository.

Simply run:

$ svnadm n recover /path/to/repos

Once the command has completed, check the permissionsin the db/ directory of the repository.

Every time | try to run svn, it says my working copy is locked.

Subversion's working copy, just like Berkeley DB, uses a journaling mechanism to perform al actions.
That is, it logs everything it is about to do before it does so. If svn isinterrupted while performing an ac-
tion, then one or more lockfiles are left behind, along with log files describing then unfinished actions.
(svn statuswill show an L next to locked directories.)

Any other process that attempts to access the working copy will fail when it sees the locks. To awaken
your working copy, you need to tell the client to finish the work. To fix this, run this command from the

45Remember that the amount of detail you provide about your setup and your problem is directly proportional to the likelihood of
getting an answer from the mailing list. Y ou're encouraged to include everything short of what you had for breakfast and your
mother's maiden name.

246

Troubleshooting

top of your working copy:

$ svn cl eanup wor ki ng- copy

I'm getting errors finding or opening a repository, but | know my
repository URL is correct.

See the section called “ Every time | try to access my repository, my Subversion client just hangs.”.

You might also have a permissions problem opening the repository. See the section called “ Supporting
Multiple Repository Access Methods’.

How can | specify a Windows drive letterinafil e:// URL?

See Repository URLSs.

I'm having trouble doing write operations to a Subversion reposi-
tory over a network.

If import works fine over local access:

$ nkdir test
$ touch test/testfil

e
$ svn inmport test file:///var/svn/test -m"Initial inport"
testfil
t

e
Addi ng test/tes e
Transmitting file data

Committed revision 1.
But not from aremote host:

$ svn inport test http://svn.red-bean.comtest -m™"lnitial inmport"
harry's password: XXXXXXX

svn_error: ..The specified activity does not exist.

We've seen this when the REPOS/ dav/ directory is not writable by the httpd process. Check the per-
missions to ensure that Apache httpd can write to the dav/ directory (and to the corresponding db/ di-
rectory, of course).

Under Windows XP, the Subversion server sometimes seems to
send out corrupted data.
You need to install Window XP Service Pack 1 to fix a TCP/IP stack bug in the operating system. You

can get al sorts of information about that Service Pack a
http://support.m crosoft. conf default.aspx?sci d=kb; EN- US; q317949.

What is the best method of doing a network trace of the conversa-
tion between a Subversion client and Apache server?

Use Ethereal to eavesdrop on the conversation:

247

Troubleshooting

Note

The following instructions are specific to the graphical version of Ethereal, and may not apply
to the command line version (whose binary is usually named tethereal).

» Pull down the Capture menu, and choose Start.

e Typeport 80 for Filter, and turn off promiscuous mode.

* Runyour Subversion client.

» Hit Stop. Now you have a capture. It looks like a huge list of lines.
* Click on the Protocol column to sort.

* Then, click on thefirst relevant TCP line to select it.

* Right click, and choose Follow TCP Stream. You'll be presented with the request/response pairs of
the Subversion client's HTTP conversion.

Alternatively, you may set a parameter in your client's ser ver s run-time configuration file to cause
neon's debugging output to appear. The numeric value of neon-debug is a combination of the
NE_DBG * vauesin the header filene_uti | s. h. Setting the neon- debug- mask variable to 130
(i.e. NE_DBG HTTP + NE_DBG_HTTPBQODY) will cause the HTTP data to be shown.

You may well want to disable compression when doing a network trace by tweaking the htt p-
conpr essi on parameter in the samefile.

| just built the distribution binary, and when | try to check out Sub-
version, | get an error about an "Unrecognized URL scheme."

Subversion uses a plugin system to allow access to repositories. Currently there are three of these plug-
ins: ra_local allows access to a local repository, ra_dav which allows access to a repository via Web-
DAV, and ra_svn allowslocal or remote access via the svnserve server. When you attempt to perform an
operation in subversion, the program tries to dynamically load a plugin based on the URL scheme. A
file:// URL willtrytoloadra local,andanhtt p: // URL will try toload ra dav.

The error you are seeing means that the dynamic linker/loader can't find the plugins to load. This nor-
mally happens when you build subversion with shared libraries, then attempt to run it without first run-
ning 'make install'. Another possible cause is that you ran make install, but the libraries were installed in
alocation that the dynamic linker/loader doesn't recognize. Under Linux, you can allow the linker/loader
to find the libraries by adding the library directory to/ et ¢/ | d. so. conf and running Idconfig. If you
don't wish to do this, or you don't have root access, you can also specify the library directory in the
LD_LIBRARY_PATH environment variable.

Why does the 'svn revert' command require an explicit target? Why
Is it not recursive by default? This behavior differs from almost all
the other subcommands.

The short answer: it's for your own good.

Subversion places a very high priority on protecting your data, and not just your versioned data. Modifi-
cations that you make to already-versioned files, and new files scheduled for addition to the version con-
trol system, must be treated with care.

248

Troubleshooting

Making the svn revert command require an explicit target—even if that target is just '.'—is one way of
accomplishing that. This requirement (as well as requiring you to supply the - - r ecur si ve flag if you
want that behavior) is intended to make you really think about what you're doing, because once your
files are reverted, your local modifications are gone forever.

When | start Apache, mod _dav_svn complains about a "bad
database version", that it found db-3.X, rather than db-4.X.

Your apr-util linked against DB-3, and svn linked against DB-4. Unfortunately, the DB symbols aren't
different. When mod_dav_svn is loaded into Apache's process-space, it ends up resolving the symbol
names against apr-util's DB-3 library.

The solution is to make sure apr-util compiles against DB-4. You can do this by passing specific
switches to either apr-util's or apache's configure: "--with-dbm=db4 --with-berkel ey-db=/the/db/prefix".

I'm getting "Function not implemented” errors on RedHat 9, and
nothing works. How do | fix this?

Thisisnot really a problem with Subversion, but it often affects Subversion users.

RedHat 9 and Fedora ship with a Berkeley DB library that relies on the kernel support for NPTL (the
Native Posix Threads Library). The kernels that RedHat provides have this support built in, but if you
compile your own kernel, then you may well not have the NPTL support. If that is the case, then you
will see errorslike this:

svn: Berkel ey DB error
svn: Berkeley DB error while creating environnent for filesystemtester/db:
Function not i npl enented

This can be fixed in one of several ways:

» Rebuild db4 for the kernel you're using.

* UseaRedHat 9 kerndl.

» Apply the NPTL patchesto the kernel you're using.

» Usearecent (2.5.x) kernel with the NPTL support included.

e Check if environment variable LD _ASSUME_KERNEL is set to 2.2.5, and if so, unset it before start-
ing Subversion (Apache). (Y ou usually would set this variable to run Wine or Winex on RedHat 9)

Why does log say "(no author)" for files committed or imported via
Apache (ra_dav)?

If you allow anonymous write access to the repository via Apache, the Apache server never challenges
the client for a username, and instead permits the write operation without authentication. Since Subver-
sion has no ideawho did the operation, thisresultsin alog like this:

$ svn log

rev 24: (no author) | 2003-07-29 19:28:35 +0200 (Tue, 29 Jul 2003)

249

Troubleshooting

Read about adding authentication in Chapter 6, Server Configuration.

I'm getting occasional "Access Denied" errors on Windows. They
seem to happen at random.

These appear to be due to the various Windows services that monitor the filesystem for changes
(anti-virus software, indexing services, the COM+ Event Notification Service). Thisis not really a bug
in Subversion, which makes it difficult for to fix. A summary of the current state of the investigation is
available at http://ww. contactor. se/ ~dast/ svn/ archi ve-2003- 10/ 0136. shtm .
A workaround that should reduce the incidence rate for most people was implemented in revision 7598.

On FreeBSD, certain operations (especially svnadmin create) some-
times hang.

Thisis usually due to alack of available entropy on the system. Subversion asks APR to generate ran-
dom numbers to create UUIDs from time to time, and certain operating systems will block for high-
quality randomness. Y ou probably need to configure the system to gather entropy from sources such as
hard-disk and network interrupts. Consult your system manpages, specifically random(4) and rndcon-
trol(8) on how to effect this change. Another workaround is to compile APR against / dev/ ur andom
instead of / dev/ r andom

| can see my repository in a web browser, but 'svn checkout' gives
me an error about "301 Moved Permanently".

It means your httpd.conf is misconfigured. Usually this error happens when you've defined the Subver-
sion virtual "location™ to exist within two different scopes at the same time.

For example, if you've exported a repository as <Locati on /ww/ f 00>, but you've also set your
Docurrent Root to be/ www, then you're in trouble. When the request comesin for / www/ f oo/ bar ,
apache doesn't know whether to find a real file named / f oo/ bar within your Docurrent Root , or
whether to ask mod_dav_svn to fetch afile/ bar from the / www/ f 0o repository. Usualy the former
case wins, and hence the "Moved Permanently" error.

The solution is to make sure your repository <Locat i on> does not overlap or live within any areas al-
ready exported as normal web shares.

I'm trying to look at an old version of my file, but svn says some-
thing about "path not found".

A nice feature of Subversion is that the repository understands copies and renames, and preserves the
historical connections. For example, if you copy / t r unk to/ br anches/ mybr anch, then the reposi-
tory understands that every file in the branch has a "predecessor” in the trunk. Running svn | og -

- ver bose will show you the historical copy, so you can see the rename:

r7932 | joe | 2003-12-03 17:54:02 -0600 (Wed, 03 Dec 2003) | 1 line
Changed pat hs:
A [branches/ nybranch (from/trunk: 7931)

Unfortunately, while the repository is aware of copies and renames, aimost all the svn client subcom-
mands in version 1.0 are not aware. Commands like svn diff, svn merge, and svn cat ought to under-
stand and follow renames, but don't yet do this. It's scheduled as post-1.0 feature. For example, if you

250

Troubleshooting

ask svn diff to compare two earlier versions of / br anches/ mybr anch/ f 0o. ¢, the command will
not automatically understand that the task actually requires comparing two versions of
/trunk/ f 0o. c, dueto the rename. Instead, you'll see an error about how the branch-path doesn't exist
in the earlier revisions.

The workaround for all problems of this sort is to do the legwork yourself. That is: you need to be aware

of any renamed paths, discover them yourself using svn log -v, and then provide them explicitly to the
svn client. For example, instead of running

$ svn diff -r 1000: 2000 http://host/repos/branches/ mybranch/foo.c
svn: Filesystemhas no item
svn: '/branches/ nybranch/foo.c' not found in the repository at revision 1000

...you would instead run

$ svn diff -r1000: 2000 http://host/repos/trunk/foo.c

251

Appendix C. WebDAV and
Autoversioning

WebDAYV is an extension to HTTP, and is growing more and more popular as a standard for file-
sharing. Today's operating systems are becoming extremely Web-aware, and many have now built-in
support for mounting “shares’ exported by WebDAV servers.

If you use Apache/mod_dav_svn as your Subversion network server, then to some extent, you are also
running a WebDAV server. This appendix gives some background on the nature of this protocol, how
Subversion uses it, and how well Subversion interoperates with other software that is WebDAV -aware.

Basic WebDAV Concepts

This section provides a very brief, very general overview to the ideas behind WebDAV. It should lay the
foundation for understanding WebDAYV compatibility issues between clients and servers.

Just Plain WebDAV

RFC 2518 defines a set of concepts and accompanying extension methods to HTTP 1.1 that make the
web into a more universal read/write medium. The basic idea is that a WebDAV-compliant web server
can act like a generic file server; clients can mount WebDAV “shares’ that behave much like NFS or
SMB shares.

However, it's important to note that RFC 2518 does not provide any sort of model for version control,
despite the “V” in DAV. Basic WebDAYV clients and servers assume only one version of each file or di-
rectory exists, and can be repeatedly overwritten.

Here are the new concepts and methods introduced in basic WebDAYV:

New write methods
Beyond the standard HTTP PUT method (which creates or overwrites a web resource), WebDAV
defines new COPY and MOVE methods for duplicating or rearranging resources.

Collections
Thisis simply the WebDAYV term for a grouping of resources (URIS). In most cases, it is analogous
to a“directory”. You can tell something is a collection if it ends with atrailing “/”. Whereasfile re-
sources can be written or created with a PUT method, collection resources are created with the new
MKCOL method.

Properties
Thisis same idea present in Subversion—metadata attached to files and collections. A client can list
or retrieve properties attached to a resource with the new PROPFI ND method, and can change them
with the PROPPATCH method. Some properties are wholly created and controlled by users (e.g. a
property called “color”), and others are wholly created and controlled by the WebDAV server (e.g.
a property that contains the last modification time of a file). The former kind are called “dead”
properties, and the latter kind are called “live” properties.

Locking
A WebDAYV server may decide to offer alocking feature to clients—this part of the specification is
optional, although most WebDAV servers do offer the feature. If present, then clients can use the
new LOCK and UNLCOCK methods to mediate access to a resource. In most cases these methods are
used to create exclusive write locks (as discussed in the section called “ The Lock-Modify-Unlock

“BEor this reason, some people jokingly refer to generic WebDAYV clients as“WebDA” clients!

252

WebDAYV and Autoversioning

Solution”), although shared write locks are also possible.

DeltaV Extensions

Because RFC 2518 left out versioning concepts, another capable group was left with the responsibility
of writing RFC 3253, which adds versioning to WebDAYV. WebDAV/DdtaV clients and servers are of-
ten called just “DeltaV” clients and servers, since DeltaV implies the existence of basic WebDAV.

DeltaV introduces awhole slew of new acronyms, but don't be intimidated. The ideas are fairly straight-
forward. Here are the new concepts and methods introduced in DeltaV:

Per-resource versioning
Like CVS and other version-control systems, DeltaV assumes that each resource has a potentially
infinite number of states. A client begins by placing a resource under version control using the new
VERSI ON- CONTROL method. This creates a new Version Controlled Resource (VCR). Every time
you change the VCR (via PUT, PROPPATCH, etc.), a new state of the resource is created, called a
Version Resource (VR). VCRs and VRs are still ordinary web resources, defined by URLSs. Specific
VRs can have human-friendly names as well.

Server-side working-copy model

Some DeltaV servers support the ability to create a virtual “workspace” on the server, where all of
your work is performed. Clients use the MKWORKSPACE method to create a private area, then indi-
cate they want to change specific VCRs by “checking them out” into the workspace, editing them,
and “checking them in” again. In HTTP terms, the sequence of methods would be CHECKOUT,
PUT, CHECKI N. After each CHECKI N, anew VR is created, and edited VCR's contents now “ point
to” the latest VR. Each VCR has aso has a “history” resource which tracks and orders its various
VR states.

Client-side working-copy model

Some DeltaV servers also support the idea that the client may have a private working copy full of
specific VRs. (Thisis how CV S and Subversion work.) When the client wants to commit changes to
the server, it begins by creating a temporary server transaction (called an activity) with the MKAC-
TI VI TY method. The client then performs a CHECKOUT on each VR it wishes to change, which
creates a number of temporary “working resources’ in the activity, that can be modified using PUT
and PROPPATCH methods. Finally, the client performs a CHECKI N on each working resource,
which creates anew VR within each VCR, and the entire activity is deleted.

Configurations
DeltaV allows you define flexible collections of VCRs called “configurations’, which don't neces-
sarily respond to particular directories. Each VCR's contents can be made to point to a specific VR
using the UPDATE method. Once the configuration is perfect, the client can create a “ snapshot” of
the whole configuration, called a“baseline”. Clients use the CHECKOUT and CHECKI N methods to
capture specific states of configurations, much like they use these methods to create specific VR
states of VCRs.

Extensibility
DeltaV defines a new method, REPORT, which allows the client and server to perform customized
data exchanges. The client sends a REPORT request with a properly-labeled XML body full of cus-
tom data; assuming the server understands the specific report-type, it responds with an equally cus-
tom XML body. Thistechnique isvery similar to XML-RPC.

Autoversioning
For many, thisisthe “killer” feature of DeltaV. If the DeltaV server supports this feature, then basic
WebDAYV clients (i.e. those unaware of versioning) can still write to the server, and the server will
silently perform versioning anyway. In the smplest example, an ignorant PUT from a basic Web-
DAV client might be translated by the server as a CHECKOUT, PUT, CHECKI N.

253

WebDAYV and Autoversioning

Subversion and DeltaV

So how “compatible” is Subversion with other DeltaV software? In two words: not very. At least not
yet, not in Subversion 1.0.

While libsvn_ra_dav sends DeltaV requests to the server, the Subversion client is not a general-purpose
DeltaV client. In fact, it expects some custom features from the server (especially through custom RE-

PORT requests). Further, mod_dav_svn is not a general-purpose DeltaV server. It only implements a
strict subset of the DeltaV specification. A more general WebDAV or DeltaV client may very well be
ableto interoperate against it, but only if that client operates within the narrow confines of those features
that the server has implemented. The Subversion development team plans to address general WebDAYV
interoperability in afuture release of Subversion.

Mapping Subversion to DeltaV

Hereisavery “high-level” description of how various Subversion client operations use DeltaV. In many
cases, these explanations are gross oversimplifications. They should not be taken as a substitute for read-
ing Subversion's source code or talking with its devel opers.

svn checkout/list
Perform a PROPFI ND of depth 1 on the collection to get a list of immediate children. Perform a
CET (and possibly a PROPFI ND) on each child. Recurse into collections and repeat.

svn commit
Create an activity with MKACTI VI TY, and do a CHECKOUT of each changed item, followed by a
PUT of new data. Finally, a MERGE request causes an implicit CHECKI N of all working resources.

svn update/switch/status/merge/diff
Send a custom REPORT request that describes the mixed-revision (and mixed-url) state of the work-
ing copy. The server sends a custom response that describes which items need updating. The client
loops over the response, performing GET and PROPFI ND requests as needed. For updates and
switches, install the new data in the working copy. For diff and merge commands, compare the data
to the working copy, possibly applying changes as local modifications.

Autoversioning Support

At the time of writing, the truth is that there are very few DeltaV clients in the world; RFC 3253 is still
relatively new. However users do have access to “generic” clients, because almost every modern operat-
ing system now has an integrated basic WebDAV client. With thisin mind, Subversion developers real-
ized that if Subversion 1.0 was to have any interoperability features, support for DeltaV autoversioning
would be the best approach.

To activate autoversioning in mod_dav_svn, use the SVNAut over si oni ng directive within the
ht t pd. conf Locat i on block, like so:

<Location /repos>
DAV svn
SVNPat h / absol ut e/ pat h/to/ repository
SVNAut over si oni ng on

</ Locati on>

Normally, if a generic WebDAV client attempted a PUT to a path within your repository location,
mod_dav_svn would outright reject the request. (It normally only alows such operations on “working
resources’ within DeltaV “activities’.) With SVNAut over si oni ng turned on, however, the server in-

254

WebDAYV and Autoversioning

terprets the PUT request as an internal MKACTI VI TY, CHECKOUT, PUT, and CHECKI N. A generic log
message is auto-generated, and a new filesystem revision is created.

Because so many operating systems aready have integrated WebDAYV abilities, the use-case for this fea-
ture borders on fantastical: imagine an office of ordinary users running Microsoft Windows or Mac OS.
Each computer “mounts’ the Subversion repository, which appears to be an ordinary network share.
They use the server as they always do: open files from the server, edit them, and save them back to the
server. But in this fantasy, the server is automatically versioning everything. Later on, a sysadmin can
use a Subversion client to search and retrieve al older versions.

Is this fantasy real? Not quite. The main snag is that Subversion 1.0 has no support whatsoever for the
WebDAV LOCK or UNLOCK methods. Most operating system DAV clients attempt to LOCK a resource
opened directly from a DAV-mounted network share. For now, users may have to copy a file from the
DAV shareto local disk, edit thefile, then copy it back again. Not ideal autoversioning, but still doable.

The mod_dav_lock Alternative

The mod_dav Apache module is a complex beast: it understands and parses al of the WebDAV and
DeltaV methods, yet it depends on aback-end “provider” to access the resources themselves.

In its ssimplest incarnation, a user can use mod_dav_fs as a provider for mod_dav. mod_dav_fs uses the
ordinary filesystem to store files and directories, and only understands vanilla WebDAV methods, not
DeltaVv.

Subversion, on the other hand, uses mod_dav_svn as a provider for mod_dav. mod_dav_svn understands
all WebDAV methods except LOCK, and understands a sizable subset of DeltaVv methods. It accesses
data in the Subversion repository, rather than in the real filesystem. Subversion 1.0 doesn't support lock-
ing, because it W§Ju|d actually quite difficult to implement, since Subversion uses the copy-mod-
ify-merge model 4

In Apache httpd-2.0, mod_dav supports the LOCK method by tracking locks in a private database, as-
suming that the provider is willing to accept them. In Apache httpd-2.1 or later, however, this locking
support has been broken into an independent module, mod_dav_lock. It allows any mod_dav provider to
take advantage of the lock database, including mod_dav_svn, even though mod_dav_svn doesn't actu-
ally understand locking.

Confused yet?

In a nutshell, you can use mod_dav_lock in Apache httpd-2.1 (or later) to create the illusion that
mod_dav_svn is honoring LOCK reguests. Make sure mod_dav_lock is either compiled into httpd, or be-
ing loaded in your ht t pd. conf . Then simply add the DAVGener i cLockDB directive to your Lo-
cation likeso:

<Location /repos>
DAV svn
SVNPat h / absol ute/ path/to/ repository
SVNAuUt over si oni ng on
DavGeneri cLockDB / path/to/ store/l ocks
</ Locati on>

This technique is arisky business; in some sense, the mod_dav_svn is now lying to the WebDAYV client.
It claims to accept the LOCK request, but in reality the lock isn't being enforced at all levels. If a second
WebDAYV client attempts to LOCK the same resource, then mod_dav_lock will notice and correctly deny
the request. But there's absolutely nothing preventing an ordinary Subversion client from changing the
file viaanormal svn commit! If you use this technique, you're giving users the opportunity to stomp on
each others' changes. In particular, a WebDAV client might accidentally overwrite a change committed

4subversion may someday develop a reserved-checkout locking model that can live peaceably with copy-modify-merge, but it
probably won't happen soon.

255

WebDAYV and Autoversioning

by regular svn client.

On the other hand, if you set up your environment very carefully, you may mitigate the risk. For exam-
ple, if all of your users are working though basic WebDAV clients (rather than svn clients), then things
should be fine.

Autoversioning Interoperability

In this section, we'll describe the most common generic WebDAYV clients (at the time of writing), and
how well they operate against amod_dav_svn server using the SVNAut over si oni ng directive. RFC
2518 is a hit large, and perhaps a bit too flexible. Every WebDAV client behaves dightly differently,
and creates dlightly different problems.

Win32 WebFolders

Windows 98, 2000, and XP have an integrated WebDAYV client known as “WebFolders’. On Windows
98, the feature might need to be explicitly installed; if present, a “WebFolders’ directory appears di-
rectly within My Computer. On Windows 2000 and XP, ssmply open My Network Places, and run the
Add Network Place icon. When prompted, enter the WebDAV URL. The shared folder will appear
within My Network Places.

Most write operations work fine against an autoversioning mod_dav_svn server, but there are few prob-
lems:

e If the computer is a member of an NT Domain, then it seems to be unable to connect to the Web-
DAV share. It repeatedly asks for a name and password, even when the Apache server isn't issuing
an authentication challenge! Some have speculated that this might happen because WebFolders is
specifically designed to operate against Microsoft's SharePoint DAV server. If the machine isn't part
of an NT Domain, then the share is mounted without a problem. This mystery is not yet solved.

» A file can't be opened for direct editing from the share; it always comes up read-only. The
mod_dav_lock technique doesn't help, because WebFolders doesn't use the LOCK method at all. The
previously mentioned “copy, edit, re-copy” method does work, however. The file on the share can be
successfully overwritten by alocally edited copy.

Mac OS X

Apple's OS X operating system has an integrated WebDAYV client. From the Finder, select the “ Connect
to Server” item frothhe Go menu. Enter aWebDAV URL, and it appears as a disk on the desktop, just
like any file server.*

Unfortunately, this client refuses to work against an autoversioning mod_dav_svn because of its lack of
LOCK support. Mac OS X discovers the missing LOCK ability during the initial HTTP OPTI ONS feature
exchange, and thus decides to mount the Subversion repository as a read-only share. After that, no write
operations are possible at al. In order to mount the repository as a read-write share, you must use the
mod_dav_lock trick discussed previously. Once locking seems to work, the share behaves very nicely:
files can be opened directly in read/write mode, although each save operation will cause the client to do
a PUT to atemporary location, a DELETE of origina file, and a MOVE of the temporary resource to the
original filename. That's three new Subversion revisions per savel

One more word of warning: OS X's WebDAYV client can be overly sensitive to HTTP redirects. If you're

unable to mount the repository at all, you may need to enable the Br owser Mat ch directive in your
ht t pd. conf:

48nix users can also run mount -t webdav URL /mountpoint.

256

WebDAYV and Autoversioning

Br owser Mat ch ""WebDAVFS/ 1. [012] " redirect-carefully

Unix: Nautilus 2

Nautilus is the officia file manager/browser for the GNOME desktop. Its main home page is at
http://ww. gnomne. or g/ proj ect s/ nautil us/. By simply typing a WebDAV URL into the
Nautilus window, the DAV share appears like alocal filesystem.

In general, Nautilus 2 works reasonably well against an autoversioning mod_dav_svn, with the follow-
ing caveats:

e Any files opened directly from the share are treated as read-only. Even the mod_dav_lock trick
seems to have no effect. It seems that Nautilus never issues the LOCK method at all. The “copy lo-
caly, edit, copy back” trick does work, however. Unfortunately, Nautilus overwrites the old file by
issuing a DELETE first, which creates an extrarevision.

* When overwriting or creating a file , Nautilus first does a PUT of an empty file, then overwrites it
with a second PUT. This creates two Subversion filesystem revisions, rather than one.

* When deleting a collection, it issues an HTTP DELETE on each individual child instead of on the
collection itself. This creates a whole bunch of new revisions.

Linux davfs2

Linux davfs2 is a filesystem module for the Linux kernel, whose development is located at
http://dav. sour cef orge. net/. Once installed, a WebDAV network share can be mounted
with the usual Linux mount command.

The word on the street is that this DAV client doesn't work at all with mod_dav_svn's autoversioning.
Every single attempt to write to the server is preceded by a LOCK request, which mod_dav_svn doesn't
support. At thistime, there is no data indicating whether the use of mod_dav_lock resolves this problem.

257

Appendix D. Third Party Tools

Subversion's modular design (covered in the section called “Layered Library Design”) and the availabil-
ity of language bindings (as described in the section called “Using Languages Other than C and C++")
make it a likely candidate for use as an extension or backend to other pieces of software. In this ap-
pendix, we'll briefly introduce you to some of the many third-party tools that are using Subversion func-
tionality under-the-hood.

For a more recently updated version of this information, check out the Links page on the Subversion
website (ht t p: // subversion.tigris.org/project_Ilinks.htm).

Clients and Plugins

AnkhSVN (htt p: //ankhsvn. tigris.org/)
Subversion add-in for Microsoft Visual Studio .NET

JSVN (http://jsvn. al ternateconputing.conl)
Java Subversion Client, including a plugin for IDEA

psvn.el (http://xsteve.nit.at/prg/vc_svn/)
Subversion interface for emacs

RapidSVN (htt p: //rapi dsvn.tigris.org/)
Cross-platform Subversion GUI, based on the WxPython libaries

Subclipse (htt p: // subcl i pse.tigris.org/)
Subversion plugin for the Eclipse environment

Subway (ht t p: / / ni dar os. homedns. or g/ subway/)
Microsoft SCC provider for Subversion

sourcecross.org (ht t p: / / www. sour cecr 0ss. org/)
Microsoft SCC provider for Subversion

Supervision (htt p: // supervision.tigris.org/)
Java/Swing visua client for Subversion

Sven (ht t p: / / www. ni kwest . de/ Sof t war e/ #SvenQver vi ew)
Native GUI for Subversion using the Mac OS X Cocoa framework

SvndEclipse (htt p: / / svndeclipse.tigris.org/)
Subversion plugin for the Eclipse IDE

Svn-Up(http://svnup.tigris.org/)
Java-based GUI for Subversion and plugin for the IDEA IDE

TortoiseSVN (http://tortoisesvn.tigris.org/)
Subversion client, implemented as a Microsoft Windows shell extension

WorkBench (htt p: // pysvn.tigris.org/)
Cross platform Python-based software development GUI built on Subversion

Language Bindings

258

Third Party Tools

PySVN (http:// pysvn.tigris.org/)
Object-oriented Python bindings for the Subversion client API

Subversion (htt p: // subversion.tigris.org/)
Python, Perl, and Java bindings to Subversion API, mirroring the core C API

SVNCPP (http://rapidsvn.tigris.org/)
C++ object-oriented bindings for the Subversion client AP

Repository Converters

cvs2svn (htt p: // cvs2svn. tigris.org/)
CV S-to-Subversion conversion

Subversion VCP Plugin (ht t p: // svn. cl kao. org/ revm / br anches/ svn-perl /)
VCP plugin for CV S-to-Subversion

Higher Level Tools

Kwiki (ht t p: // ww. kwi ki . org/)
Wiki with a Subversion backup backend

Subissue (htt p: / / subi ssue. tigris.org/)
Track issues directly in your Subversion repository

Subwiki (http: //subwi ki .tigris.org/)
Wiki that uses Subversion for its data repository

svk (http://svk.elixus.org/)
Decentralized version control system based on Subversion

submaster (ht t p: / / www. r ockl i nux. or g/ subnmaster. htm)
System for distributed software development, based on Subversion

Repository Browsing Tools

SVN:Web (htt p: // svn. el i xus. or g/ r epos/ menber/ cl kao/)
Perl-based Subversion repository Web interface

ViewCVS(http://vi ewcvs. sourceforge. net/)
Python-based CGI script for browsing CV'S and Subversion repositories

WebSVN (http://websvn.tigris.org/)
PHP-based Subversion repository browser

Trac (htt p: // projects. edgewal | . com trac)
Minimalistic web-based software project management and bug/issue tracking system with version
control interfaces and integrated Wiki support

259

Glossary

Glossary
1. A collection of glosses or explanations of words and passages of a work or author; a partial dic-
tionary of awork, an author, a dialect, art, or science, explaining archaic, technical, or other uncom-
mon words.

2. An aphabetical list of technical terms in some specialized field of knowledge; usually published
as an appendix to atext on that field.

260

Colophon

Etc.

261

	Version Control with Subversion
	Table of Contents
	Foreword
	Preface
	Audience
	How to Read this Book
	Conventions Used in This Book
	Typographic Conventions
	Icons

	Organization of This Book
	This Book is Free
	Acknowledgments
	From Ben Collins-Sussman
	From Brian W. Fitzpatrick
	From C. Michael Pilato

	Chapter 1. Introduction
	What is Subversion?
	Subversion's History
	Subversion's Features
	Subversion's Architecture
	Installing Subversion
	Subversion's Components

	Chapter 2. Basic Concepts
	The Repository
	Versioning Models
	The Problem of File-Sharing
	The Lock-Modify-Unlock Solution
	The Copy-Modify-Merge Solution

	Subversion in Action
	Working Copies
	Revisions
	How Working Copies Track the Repository
	The Limitations of Mixed Revisions

	Summary

	Chapter 3. Guided Tour
	Help!
	Import
	Revisions: Numbers, Keywords, and Dates, Oh My!
	Revision Numbers
	Revision Keywords
	Revision Dates

	Initial Checkout
	Basic Work Cycle
	Update Your Working Copy
	Make Changes to Your Working Copy
	Examine Your Changes
	svn status
	svn diff
	svn revert

	Resolve Conflicts (Merging Others' Changes)
	Merging Conflicts by Hand
	Copying a File Onto Your Working File
	Punting: Using svn revert

	Commit Your Changes

	Examining History
	svn log
	svn diff
	Examining Local Changes
	Comparing Working Copy to Repository
	Comparing Repository to Repository

	svn cat
	svn list
	A Final Word on History

	Other Useful Commands
	svn cleanup
	svn import

	Summary

	Chapter 4. Branching and Merging
	What's a Branch?
	Using Branches
	Creating a Branch
	Working with Your Branch
	The Moral of the Story

	Copying Changes Between Branches
	Copying Specific Changes
	Best Practices for Merging
	Tracking Merges Manually
	Previewing Merges

	Common Use-Cases for Merging
	Merging a Whole Branch to Another
	Undoing Changes
	Resurrecting Deleted Items

	Switching a Working Copy
	Tags
	Creating a Simple Tag
	Creating a Complex Tag

	Branch Maintenance
	Repository Layout
	Data Lifetimes

	Summary

	Chapter 5. Repository Administration
	Repository Basics
	Understanding Transactions and Revisions
	Unversioned Properties
	Berkeley DB

	Repository Creation and Configuration
	Hook Scripts
	Berkeley DB Configuration

	Repository Maintenance
	An Administrator's Toolkit
	svnlook
	svnadmin
	svndumpfilter
	svnshell.py
	Berkeley DB Utilities

	Repository Cleanup
	Managing Disk Space
	Repository Recovery
	Migrating a Repository
	Repository Backup

	Adding Projects
	Choosing a Repository Layout
	Creating the Layout, and Importing Initial Data

	Summary

	Chapter 6. Server Configuration
	Overview
	Network Model
	Requests and Responses
	Client Credentials Caching

	svnserve, a custom server
	Invoking the Server
	Built-in authentication and authorization
	Create a 'users' file and realm
	Set access controls

	SSH authentication and authorization

	httpd, the Apache HTTP server
	Prerequisites
	Basic Apache Configuration
	Authentication Options
	Basic HTTP Authentication
	SSL Certificate Management

	Authorization Options
	Blanket Access Control
	Per-Directory Access Control

	Extra Goodies
	Repository Browsing
	Other Features

	Supporting Multiple Repository Access Methods

	Chapter 7. Advanced Topics
	Runtime Configuration Area
	Configuration Area Layout
	Configuration and the Windows Registry
	Configuration Options
	Servers
	Config

	Properties
	Why Properties?
	Manipulating Properties
	Special properties
	svn:executable
	svn:mime-type
	svn:ignore
	svn:keywords
	svn:eol-style
	svn:externals

	Externals Definitions
	Vendor branches
	General Vendor Branch Management Procedure
	svn_load_dirs.pl

	Chapter 8. Developer Information
	Layered Library Design
	Repository Layer
	Repository Access Layer
	RA-DAV (Repository Access Using HTTP/DAV)
	RA-SVN (Custom Protocol Repository Access)
	RA-Local (Direct Repository Access)
	Your RA Library Here

	Client Layer

	Using the APIs
	The Apache Portable Runtime Library
	URL and Path Requirements
	Using Languages Other than C and C++

	Inside the Working Copy Administration Area
	The Entries File
	Pristine Copies and Property Files

	WebDAV
	Programming with Memory Pools
	Contributing to Subversion
	Join the Community
	Get the Source Code
	Become Familiar with Community Policies
	Make and Test Your Changes
	Donate Your Changes

	Chapter 9. Subversion Complete Reference
	The Subversion Command Line Client: svn
	svn Switches
	svn Subcommands
	svn add
	svn blame
	svn cat
	svn checkout
	svn cleanup
	svn commit
	svn copy
	svn delete
	svn diff
	svn export
	svn help
	svn import
	svn info
	svn list
	svn log
	svn merge
	svn mkdir
	svn move
	svn propdel
	svn propedit
	svn propget
	svn proplist
	svn propset
	svn resolved
	svn revert
	svn status
	svn switch
	svn update

	svnadmin
	svnadmin Switches
	svnadmin Subcommands
	svnadmin create
	svnadmin dump
	svnadmin help
	svnadmin hotcopy
	svnadmin list-dblogs
	svnadmin list-unused-dblogs
	svnadmin load
	svnadmin lstxns
	svnadmin recover
	svnadmin rmtxns
	svnadmin setlog
	svnadmin verify

	svnlook
	svnlook Switches
	svnlook
	svnlook author
	svnlook cat
	svnlook changed
	svnlook date
	svnlook diff
	svnlook dirs-changed
	svnlook help
	svnlook history
	svnlook info
	svnlook log
	svnlook propget
	svnlook proplist
	svnlook tree
	svnlook uuid
	svnlook youngest

	Appendix A. Subversion for CVS Users
	Revision Numbers Are Different Now
	Directory Versions
	More Disconnected Operations
	Distinction Between Status and Update
	Branches and Tags
	Metadata Properties
	Conflict Resolution
	Binary Files and Translation
	Versioned Modules
	Authentication
	Converting a Repository from CVS to Subversion

	Appendix B. Troubleshooting
	Common Problems
	Problems Using Subversion
	Every time I try to access my repository, my Subversion client just hangs.
	Every time I try to run svn, it says my working copy is locked.
	I'm getting errors finding or opening a repository, but I know my repository URL is correct.
	How can I specify a Windows drive letter in a file:// URL?
	I'm having trouble doing write operations to a Subversion repository over a network.
	Under Windows XP, the Subversion server sometimes seems to send out corrupted data.
	What is the best method of doing a network trace of the conversation between a Subversion client and Apache server?
	I just built the distribution binary, and when I try to check out Subversion, I get an error about an "Unrecognized URL scheme."
	Why does the 'svn revert' command require an explicit target? Why is it not recursive by default? This behavior differs from almost all the other subcommands.
	When I start Apache, mod_dav_svn complains about a "bad database version", that it found db-3.X, rather than db-4.X.
	I'm getting "Function not implemented" errors on RedHat 9, and nothing works. How do I fix this?
	Why does log say "(no author)" for files committed or imported via Apache (ra_dav)?
	I'm getting occasional "Access Denied" errors on Windows. They seem to happen at random.
	On FreeBSD, certain operations (especially svnadmin create) sometimes hang.
	I can see my repository in a web browser, but 'svn checkout' gives me an error about "301 Moved Permanently".
	I'm trying to look at an old version of my file, but svn says something about "path not found".

	Appendix C. WebDAV and Autoversioning
	Basic WebDAV Concepts
	Just Plain WebDAV
	DeltaV Extensions

	Subversion and DeltaV
	Mapping Subversion to DeltaV
	Autoversioning Support
	The mod_dav_lock Alternative

	Autoversioning Interoperability
	Win32 WebFolders
	Mac OS X
	Unix: Nautilus 2
	Linux davfs2

	Appendix D. Third Party Tools
	Clients and Plugins
	Language Bindings
	Repository Converters
	Higher Level Tools
	Repository Browsing Tools

	Glossary

